save more info for lab rotation
This commit is contained in:
parent
24e91a5601
commit
aacdac9aad
@ -1,32 +1,104 @@
|
||||
|
||||
from ModelFit import get_best_fit, ModelFit
|
||||
import os
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from Baseline import BaselineCellData
|
||||
|
||||
|
||||
SAVE_DIR = "results/lab_rotation/"
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
dir = "results/final_1/"
|
||||
res_folder = "results/final_2/"
|
||||
|
||||
# save_model_parameters(res_folder)
|
||||
# save_cell_info(res_folder)
|
||||
|
||||
# test_save_cell_info()
|
||||
|
||||
|
||||
def save_model_parameters(res_folder):
|
||||
cells = []
|
||||
eod_freqs = []
|
||||
parameters = []
|
||||
|
||||
for cell in sorted(os.listdir(dir)):
|
||||
cell_dir = dir + cell
|
||||
for cell in sorted(os.listdir(res_folder)):
|
||||
cell_dir = res_folder + cell
|
||||
|
||||
model = get_best_fit(cell_dir, use_comparable_error=False)
|
||||
cells.append(cell)
|
||||
eod_freqs.append(model.get_cell_data().get_eod_frequency())
|
||||
parameters.append(model.get_final_parameters())
|
||||
|
||||
save_csv(dir + "models.csv", cells, eod_freqs, parameters)
|
||||
save_csv(SAVE_DIR + "models.csv", cells, eod_freqs, parameters)
|
||||
|
||||
|
||||
def test_save_cell_info():
|
||||
for cell in sorted(os.listdir(SAVE_DIR)):
|
||||
cell_dir = SAVE_DIR + cell + "/"
|
||||
if not os.path.isdir(cell_dir):
|
||||
continue
|
||||
|
||||
fi_frame = pd.read_csv(cell_dir + "fi_curve_info.csv")
|
||||
|
||||
plt.plot(fi_frame["contrast"], fi_frame["f_inf"], 'o')
|
||||
plt.plot(fi_frame["contrast"], fi_frame["f_zero"], '+')
|
||||
plt.show()
|
||||
plt.close()
|
||||
|
||||
count = 1
|
||||
spike_file = "baseline_spikes_trial_{}.npy".format(count)
|
||||
while os.path.exists(cell_dir + spike_file):
|
||||
spiketimes = np.load(cell_dir + spike_file) * 1000
|
||||
|
||||
plt.hist(np.diff(spiketimes), bins=np.arange(0, 50, 0.1))
|
||||
plt.show()
|
||||
plt.close()
|
||||
|
||||
count += 1
|
||||
spike_file = "baseline_spikes_trial_{}.npy".format(count)
|
||||
|
||||
|
||||
def save_cell_info(res_folder):
|
||||
for cell in sorted(os.listdir(res_folder)):
|
||||
cell_dir = res_folder + cell
|
||||
|
||||
fit = get_best_fit(cell_dir, use_comparable_error=False)
|
||||
|
||||
save_path = SAVE_DIR + cell + "/"
|
||||
|
||||
if not os.path.exists(save_path):
|
||||
os.mkdir(save_path)
|
||||
|
||||
# fi-curve
|
||||
cell_data = fit.get_cell_data()
|
||||
f_zeros = fit.get_cell_f_zero_values()
|
||||
f_infs = fit.get_cell_f_inf_values()
|
||||
contrasts = cell_data.get_fi_contrasts()
|
||||
|
||||
data_array = np.array([contrasts, f_infs, f_zeros]).T
|
||||
fi_frame = pd.DataFrame(data_array, columns=["contrast", "f_inf", "f_zero"])
|
||||
fi_frame.to_csv(save_path + "fi_curve_info.csv")
|
||||
|
||||
spikes = cell_data.get_base_spikes()
|
||||
for i, spike_list in enumerate(spikes):
|
||||
spike_array = np.array(spike_list)
|
||||
np.save(save_path + "baseline_spikes_trial_{}.npy".format(i+1), spike_array)
|
||||
|
||||
|
||||
def save_csv(file, cells, eod_freqs, parameters):
|
||||
keys = sorted(parameters[0].keys())
|
||||
with open(file, "w") as file:
|
||||
header = "cell,eod_frequency"
|
||||
header = "cell,EODf"
|
||||
for k in keys:
|
||||
if k == "refractory_period":
|
||||
header += ",ref_period"
|
||||
elif k == "step_size":
|
||||
header += ",deltat"
|
||||
else:
|
||||
header += ",{}".format(k)
|
||||
file.write(header + "\n")
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user