save more info for lab rotation

This commit is contained in:
a.ott 2020-09-08 18:25:51 +02:00
parent 24e91a5601
commit aacdac9aad

View File

@ -1,33 +1,105 @@
from ModelFit import get_best_fit, ModelFit from ModelFit import get_best_fit, ModelFit
import os import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from Baseline import BaselineCellData
SAVE_DIR = "results/lab_rotation/"
def main(): def main():
dir = "results/final_1/" res_folder = "results/final_2/"
# save_model_parameters(res_folder)
# save_cell_info(res_folder)
# test_save_cell_info()
def save_model_parameters(res_folder):
cells = [] cells = []
eod_freqs = [] eod_freqs = []
parameters = [] parameters = []
for cell in sorted(os.listdir(dir)): for cell in sorted(os.listdir(res_folder)):
cell_dir = dir + cell cell_dir = res_folder + cell
model = get_best_fit(cell_dir, use_comparable_error=False) model = get_best_fit(cell_dir, use_comparable_error=False)
cells.append(cell) cells.append(cell)
eod_freqs.append(model.get_cell_data().get_eod_frequency()) eod_freqs.append(model.get_cell_data().get_eod_frequency())
parameters.append(model.get_final_parameters()) parameters.append(model.get_final_parameters())
save_csv(dir + "models.csv", cells, eod_freqs, parameters) save_csv(SAVE_DIR + "models.csv", cells, eod_freqs, parameters)
def test_save_cell_info():
for cell in sorted(os.listdir(SAVE_DIR)):
cell_dir = SAVE_DIR + cell + "/"
if not os.path.isdir(cell_dir):
continue
fi_frame = pd.read_csv(cell_dir + "fi_curve_info.csv")
plt.plot(fi_frame["contrast"], fi_frame["f_inf"], 'o')
plt.plot(fi_frame["contrast"], fi_frame["f_zero"], '+')
plt.show()
plt.close()
count = 1
spike_file = "baseline_spikes_trial_{}.npy".format(count)
while os.path.exists(cell_dir + spike_file):
spiketimes = np.load(cell_dir + spike_file) * 1000
plt.hist(np.diff(spiketimes), bins=np.arange(0, 50, 0.1))
plt.show()
plt.close()
count += 1
spike_file = "baseline_spikes_trial_{}.npy".format(count)
def save_cell_info(res_folder):
for cell in sorted(os.listdir(res_folder)):
cell_dir = res_folder + cell
fit = get_best_fit(cell_dir, use_comparable_error=False)
save_path = SAVE_DIR + cell + "/"
if not os.path.exists(save_path):
os.mkdir(save_path)
# fi-curve
cell_data = fit.get_cell_data()
f_zeros = fit.get_cell_f_zero_values()
f_infs = fit.get_cell_f_inf_values()
contrasts = cell_data.get_fi_contrasts()
data_array = np.array([contrasts, f_infs, f_zeros]).T
fi_frame = pd.DataFrame(data_array, columns=["contrast", "f_inf", "f_zero"])
fi_frame.to_csv(save_path + "fi_curve_info.csv")
spikes = cell_data.get_base_spikes()
for i, spike_list in enumerate(spikes):
spike_array = np.array(spike_list)
np.save(save_path + "baseline_spikes_trial_{}.npy".format(i+1), spike_array)
def save_csv(file, cells, eod_freqs, parameters): def save_csv(file, cells, eod_freqs, parameters):
keys = sorted(parameters[0].keys()) keys = sorted(parameters[0].keys())
with open(file, "w") as file: with open(file, "w") as file:
header = "cell,eod_frequency" header = "cell,EODf"
for k in keys: for k in keys:
header += ",{}".format(k) if k == "refractory_period":
header += ",ref_period"
elif k == "step_size":
header += ",deltat"
else:
header += ",{}".format(k)
file.write(header + "\n") file.write(header + "\n")
for i in range(len(cells)): for i in range(len(cells)):