change start parameters, clean up old code

This commit is contained in:
a.ott 2020-07-28 09:35:29 +02:00
parent 05c808e90b
commit 90ccb4459d

View File

@ -29,21 +29,10 @@ def main():
fit_cell_parallel(cell_data, start_parameters)
quit()
# test_single_cell("invivo_data/2012-01-17-ap/")
#
# quit()
test_single_cell("data/invivo/2010-11-08-al-invivo-1/")
start_parameters = [p for p in iget_start_parameters()]
# start_data = 8
# count = 0
# for cell_data in icelldata_of_dir("./invivo_data/"):
# count += 1
# if count < start_data:
# continue
# fit_cell_parallel(cell_data, start_parameters)
cell_data = CellData("data/invivo/2013-04-17-ac-invivo-1/")
test_single_cell("data/invivo/2015-01-20-ad-invivo-1/")
# start_parameters = [p for p in iget_start_parameters()]
# cell_data = CellData("data/invivo/2013-04-17-ac-invivo-1/")
# fit_cell_parallel(cell_data, start_parameters)
@ -59,7 +48,7 @@ def test_single_cell(path):
cell_path = os.path.basename(cell_data.get_data_path())
error = fitter.calculate_errors(model=LifacNoiseModel(res_par))
save_path = "results/invivo_results/" + cell_path + "/start_parameter_{:}_err_{:.2f}/".format(i, sum(error))
save_path = "results/invivo_bursty_results/" + cell_path + "/start_parameter_{:}_err_{:.2f}/".format(i, sum(error))
save_fitting_run_info(cell_data, res_par, p, plot=True, save_path=save_path)
print("Done with start parameters {}".format(str(i)))
@ -86,18 +75,6 @@ def fit_cell_base(parameters):
"\n error: {:.2f}".format(sum(error)))
def fit_all_cells_parallel_sync(cells, start_parameters, thread_pool, results_base_folder):
parameter = []
for cell in cells:
for i, s_pars in enumerate(start_parameters):
parameter.append((cell, i, s_pars, results_base_folder))
time1 = time.time()
thread_pool.map(fit_cell_base, parameter)
time2 = time.time()
print("Time taken for all ({:}): {:.2f}s".format(len(parameter)*len(cells), time2 - time1))
def fit_cell_parallel(cell_data, start_parameters):
cell_path = os.path.basename(cell_data.get_data_path())
save_directory = "./results/invivo_results/"
@ -125,49 +102,7 @@ def fit_cell_parallel(cell_data, start_parameters):
min_err = cur_fit.comparable_error()
best_fit = cur_fit
best_fit.generate_master_plot("./results/invivo_best/singles/")
def test_fit_routines():
fitter = Fitter()
names = ("routine_1", "routine_2")
global FIT_ROUTINE
for i, routine in enumerate([fitter.fit_routine_1, fitter.fit_routine_2]):
FIT_ROUTINE = names[i]
run_with_real_data(fitter, routine)
best = []
cells = sorted(os.listdir("test_routines/" + names[0] + "/"))
for name in names:
save_path = "test_routines/" + name + "/"
cell_best = []
for directory in sorted(os.listdir(save_path)):
path = os.path.join(save_path, directory)
if os.path.isdir(path):
cell_best.append(find_best_run(path))
best.append(cell_best)
with open("test_routines/comparision.csv", "w") as res_file:
res_file.write("routine")
for cell in cells:
res_file.write("," + cell)
for i, routine_results in enumerate(best):
res_file.write(names[i])
for cell_best in routine_results:
res_file.write("," + str(cell_best))
def find_best_run(cell_path):
values = []
for directory in sorted(os.listdir(cell_path)):
start_par_path = os.path.join(cell_path, directory)
if os.path.isdir(start_par_path):
values.append(float(start_par_path.split("_")[-1]))
return min(values)
best_fit.generate_master_plot("./results/invivo_best/")
def iget_start_parameters():
@ -175,12 +110,12 @@ def iget_start_parameters():
# expand by tau_a, delta_a ?
mem_tau_list = [0.01]
input_scaling_list = [60]
input_scaling_list = [100]
noise_strength_list = [0.03] # [0.02, 0.06]
dend_tau_list = [0.001, 0.002]
delta_a_list = [0.035, 0.065]
dend_tau_list = [0.0015]
delta_a_list = [0.035, 0.065, 0.1]
tau_a_list = [0.1, 0.4]
ref_time_list = [0.00065]
ref_time_list = [0.00065, 0.0012]
for mem_tau in mem_tau_list:
for input_scaling in input_scaling_list:
@ -194,64 +129,6 @@ def iget_start_parameters():
"delta_a": delta_a, "tau_a": tau_a, "refractory_period": ref_time}
def run_with_real_data(fitter, fit_routine_func, parallel=False):
count = 0
for cell_data in icelldata_of_dir("./data/"):
count += 1
if count < 7:
pass
#continue
print("cell:", cell_data.get_data_path())
trace = cell_data.get_base_traces(trace_type=cell_data.V1)
if len(trace) == 0:
print("NO V1 TRACE FOUND")
continue
global FIT_ROUTINE
# results_path = "results/" + os.path.split(cell_data.get_data_path())[-1] + "/"
results_path = "test_routines/" + FIT_ROUTINE + "/" + os.path.split(cell_data.get_data_path())[-1] + "/"
print("results at:", results_path)
if not os.path.exists(results_path):
os.makedirs(results_path)
# plot cell images:
cell_save_path = results_path + "cell/"
if not os.path.exists(cell_save_path):
os.makedirs(cell_save_path)
data_baseline = get_baseline_class(cell_data)
data_baseline.plot_baseline(cell_save_path)
data_baseline.plot_interspike_interval_histogram(cell_save_path)
data_baseline.plot_serial_correlation(6, cell_save_path)
data_fi_curve = get_fi_curve_class(cell_data, cell_data.get_fi_contrasts())
data_fi_curve.plot_fi_curve(cell_save_path)
start_par_count = 0
for start_parameters in iget_start_parameters():
start_par_count += 1
print("START PARAMETERS:", start_par_count)
start_time = time.time()
# fitter = Fitter()
fmin, parameters = fitter.fit_model_to_data(cell_data, start_parameters, fit_routine_func)
print(fmin)
print(parameters)
end_time = time.time()
parameter_set_path = results_path + "start_par_set_{}_fmin_{:.2f}".format(start_par_count, fmin["fun"]) + "/"
print('Fitting of cell took function took {:.3f} s'.format((end_time - start_time)))
# print(results_path)
save_fitting_run_info(cell_data, parameters, start_parameters,
plot=True, save_path=parameter_set_path)
# from Sounds import play_finished_sound
# play_finished_sound()
pass
def save_fitting_run_info(cell_data, parameters, start_parameters, plot=False, save_path=None):
if save_path is not None:
if not os.path.exists(save_path):
@ -343,32 +220,5 @@ def save_fitting_run_info(cell_data, parameters, start_parameters, plot=False, s
model_ficurve.plot_fi_curve_comparision(data_fi_curve, model_ficurve, save_path)
def test_effect_of_refractory_period():
ref_periods = [0.0006, 0.001, 0.0015]
counter = 0
core_count = mp.cpu_count()
for cell in icelldata_of_dir("./data/"):
pool = mp.Pool(core_count - 1)
counter += 1
if counter < 10:
continue
elif counter >= 14:
return
start_parameters_base = [p for p in iget_start_parameters()]
for ref_period in ref_periods:
print(cell.get_data_path())
print("ref period: {:.4f}".format(ref_period))
results_base_folder = "./test_routines/ref_period_{:.4f}/".format(ref_period)
all_start_parameters = copy.deepcopy(start_parameters_base)
for par_set in all_start_parameters:
par_set["refractory_period"] = ref_period
fit_all_cells_parallel_sync([cell], all_start_parameters, pool, results_base_folder)
del cell
del pool
if __name__ == '__main__':
main()