debug and add unittests 2
This commit is contained in:
parent
170ecab8f4
commit
8997e56618
18
CellData.py
18
CellData.py
@ -1,4 +1,3 @@
|
||||
|
||||
import DataParserFactory as dpf
|
||||
from warnings import warn
|
||||
from os import listdir
|
||||
@ -88,16 +87,16 @@ class CellData:
|
||||
|
||||
def get_mean_isi_frequencies(self):
|
||||
if self.mean_isi_frequencies is None:
|
||||
self.time_axes, self.mean_isi_frequencies = hf.all_calculate_mean_isi_frequencies(self.get_fi_spiketimes(),
|
||||
self.get_time_start(),
|
||||
self.get_sampling_interval())
|
||||
self.time_axes, self.mean_isi_frequencies = hf.all_calculate_mean_isi_frequency_traces(
|
||||
self.get_fi_spiketimes(), self.get_sampling_interval())
|
||||
|
||||
return self.mean_isi_frequencies
|
||||
|
||||
def get_time_axes_mean_frequencies(self):
|
||||
if self.time_axes is None:
|
||||
self.time_axes, self.mean_isi_frequencies = hf.all_calculate_mean_isi_frequencies(self.get_fi_spiketimes(),
|
||||
self.get_time_start(),
|
||||
self.get_sampling_interval())
|
||||
self.time_axes, self.mean_isi_frequencies = hf.all_calculate_mean_isi_frequency_traces(
|
||||
self.get_fi_spiketimes(), self.get_sampling_interval())
|
||||
|
||||
return self.time_axes
|
||||
|
||||
def get_base_frequency(self):
|
||||
@ -163,7 +162,7 @@ class CellData:
|
||||
sampling_interval = self.get_sampling_interval()
|
||||
frequencies = []
|
||||
for eod in eods:
|
||||
time = np.arange(0, len(eod)*sampling_interval, sampling_interval)
|
||||
time = np.arange(0, len(eod) * sampling_interval, sampling_interval)
|
||||
frequencies.append(hf.calculate_eod_frequency(time, eod))
|
||||
|
||||
return np.mean(frequencies)
|
||||
@ -172,7 +171,8 @@ class CellData:
|
||||
if self.fi_spiketimes is None:
|
||||
trans_amplitudes, intensities, spiketimes = self.parser.get_fi_curve_spiketimes()
|
||||
|
||||
self.fi_intensities, self.fi_spiketimes, self.fi_trans_amplitudes = hf.merge_similar_intensities(intensities, spiketimes, trans_amplitudes)
|
||||
self.fi_intensities, self.fi_spiketimes, self.fi_trans_amplitudes = hf.merge_similar_intensities(
|
||||
intensities, spiketimes, trans_amplitudes)
|
||||
|
||||
# def get_metadata(self):
|
||||
# self.__read_metadata__()
|
||||
|
@ -36,7 +36,7 @@ def find_fitting_line(lifac_model, stimulus_strengths):
|
||||
if len(spiketimes) == 0:
|
||||
frequencies.append(0)
|
||||
continue
|
||||
time, freq = hf.calculate_isi_frequency(spiketimes, 0, lifac_model.get_sampling_interval() / 1000)
|
||||
time, freq = hf.calculate_isi_frequency_trace(spiketimes, 0, lifac_model.get_sampling_interval() / 1000)
|
||||
|
||||
frequencies.append(freq[-1])
|
||||
|
||||
@ -72,7 +72,7 @@ def find_relation(lifac, line_vars, stimulus_strengths, parameter="", value=0, c
|
||||
stimulus = StepStimulus(0, duration, stim)
|
||||
lifac.simulate(stimulus, duration)
|
||||
spiketimes = lifac.get_spiketimes()
|
||||
time, freq = hf.calculate_isi_frequency(spiketimes, 0, lifac.get_sampling_interval()/1000)
|
||||
time, freq = hf.calculate_isi_frequency_trace(spiketimes, 0, lifac.get_sampling_interval() / 1000)
|
||||
|
||||
adapted_frequencies.append(freq[-1])
|
||||
goal_adapted_freq = freq[-1]
|
||||
|
@ -12,8 +12,14 @@ import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def main():
|
||||
run_test_with_fixed_model()
|
||||
# run_test_with_fixed_model()
|
||||
# quit()
|
||||
|
||||
fitter = Fitter()
|
||||
fmin, params = fitter.fit_model_to_values(700, 1400, [-0.3], 1, [0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3], [1370, 1380, 1390, 1400, 1410, 1420, 1430], 100, 0.02, 0.01)
|
||||
|
||||
print("calculated parameters:")
|
||||
print(params)
|
||||
|
||||
def run_with_real_data():
|
||||
for celldata in icelldata_of_dir("./data/"):
|
||||
@ -26,7 +32,7 @@ def run_with_real_data():
|
||||
end_time = time.time()
|
||||
|
||||
print('Fitting of cell took function took {:.3f} s'.format((end_time - start_time)))
|
||||
break
|
||||
|
||||
pass
|
||||
|
||||
|
||||
@ -35,14 +41,13 @@ def run_test_with_fixed_model():
|
||||
a_delta = 0.08
|
||||
|
||||
parameters = {'mem_tau': 5, 'delta_a': a_delta, 'input_scaling': 100,
|
||||
'v_offset': 50, 'threshold': 1, 'v_base': 0, 'step_size': 0.05, 'tau_a': a_tau,
|
||||
'v_offset': 80, 'threshold': 1, 'v_base': 0, 'step_size': 0.00005, 'tau_a': a_tau,
|
||||
'a_zero': 0, 'v_zero': 0, 'noise_strength': 0.5}
|
||||
|
||||
model = LifacNoiseModel(parameters)
|
||||
eod_freq = 750
|
||||
contrasts = np.arange(0.5, 1.51, 0.1)
|
||||
modulation_freq = 10
|
||||
print(contrasts)
|
||||
baseline_freq, vector_strength, serial_correlation = model.calculate_baseline_markers(eod_freq)
|
||||
f_infinities, f_infinities_slope = model.calculate_fi_markers(contrasts, eod_freq, modulation_freq)
|
||||
|
||||
@ -61,7 +66,7 @@ class Fitter:
|
||||
if step_size is not None:
|
||||
self.model = LifacNoiseModel({"step_size": step_size})
|
||||
else:
|
||||
self.model = LifacNoiseModel({"step_size": 0.05})
|
||||
self.model = LifacNoiseModel({"step_size": 0.0005})
|
||||
# self.data = data
|
||||
self.fi_contrasts = []
|
||||
self.eod_freq = 0
|
||||
@ -113,11 +118,12 @@ class Fitter:
|
||||
|
||||
# minimize the difference in baseline_freq first by fitting v_offset
|
||||
# v_offset = self.__fit_v_offset_to_baseline_frequency__()
|
||||
v_offset = self.model.find_v_offset(self.baseline_freq, self.eod_freq)
|
||||
base_stimulus = SinusAmplitudeModulationStimulus(self.eod_freq, 0, 0)
|
||||
|
||||
v_offset = self.model.find_v_offset(self.baseline_freq, base_stimulus)
|
||||
self.model.set_variable("v_offset", v_offset)
|
||||
|
||||
# only eod with amplitude 1 and no modulation
|
||||
base_stimulus = SinusAmplitudeModulationStimulus(self.eod_freq, 0, 0)
|
||||
_, spiketimes = self.model.simulate_fast(base_stimulus, 30)
|
||||
|
||||
baseline_freq = hF.mean_freq_of_spiketimes_after_time_x(spiketimes, freq_sampling_rate, 5)
|
||||
@ -131,12 +137,12 @@ class Fitter:
|
||||
f_infinities = []
|
||||
for contrast in self.fi_contrasts:
|
||||
stimulus = SinusAmplitudeModulationStimulus(self.eod_freq, contrast, self.modulation_frequency)
|
||||
_, spiketimes = self.model.simulate_fast(stimulus, 0.5)
|
||||
_, spiketimes = self.model.simulate_fast(stimulus, 1)
|
||||
|
||||
if len(spiketimes) < 2:
|
||||
f_infinities.append(0)
|
||||
else:
|
||||
f_infinity = hF.mean_freq_of_spiketimes_after_time_x(spiketimes, freq_sampling_rate, 0.4)
|
||||
f_infinity = hF.mean_freq_of_spiketimes_after_time_x(spiketimes, freq_sampling_rate, 0.5)
|
||||
f_infinities.append(f_infinity)
|
||||
|
||||
popt, pcov = curve_fit(fu.line, self.fi_contrasts, f_infinities, maxfev=10000)
|
||||
@ -161,87 +167,6 @@ class Fitter:
|
||||
print("Cost function run times:", self.counter, "error sum:", sum(errors), errors)
|
||||
return error_bf + error_vs + error_sc + error_f_inf_slope + error_f_inf
|
||||
|
||||
def __fit_v_offset_to_baseline_frequency__(self):
|
||||
test_model = self.model.get_model_copy()
|
||||
voltage_step_size = 1000
|
||||
simulation_time = 2
|
||||
v_offset_start = 0
|
||||
v_offset_current = v_offset_start
|
||||
|
||||
test_model.set_variable("v_offset", v_offset_current)
|
||||
base_stimulus = SinusAmplitudeModulationStimulus(self.eod_freq, 0, 0)
|
||||
_, spiketimes = test_model.simulate_fast(base_stimulus, simulation_time)
|
||||
if len(spiketimes) < 5:
|
||||
baseline_freq = 0
|
||||
else:
|
||||
baseline_freq = hF.mean_freq_of_spiketimes_after_time_x(spiketimes, simulation_time/2)
|
||||
|
||||
if baseline_freq < self.baseline_freq:
|
||||
upwards = True
|
||||
v_offset_current += voltage_step_size
|
||||
else:
|
||||
upwards = False
|
||||
v_offset_current -= voltage_step_size
|
||||
|
||||
# search for a value below and above the baseline freq:
|
||||
while True:
|
||||
# print(self.counter, baseline_freq, self.baseline_freq, v_offset_current)
|
||||
# self.counter += 1
|
||||
test_model.set_variable("v_offset", v_offset_current)
|
||||
base_stimulus = SinusAmplitudeModulationStimulus(self.eod_freq, 0, 0)
|
||||
_, spiketimes = test_model.simulate_fast(base_stimulus, simulation_time)
|
||||
|
||||
if len(spiketimes) < 2:
|
||||
baseline_freq = 0
|
||||
else:
|
||||
baseline_freq = hF.mean_freq_of_spiketimes_after_time_x(spiketimes, simulation_time/2)
|
||||
|
||||
if baseline_freq < self.baseline_freq and upwards:
|
||||
v_offset_current += voltage_step_size
|
||||
|
||||
elif baseline_freq < self.baseline_freq and not upwards:
|
||||
break
|
||||
|
||||
elif baseline_freq > self.baseline_freq and upwards:
|
||||
break
|
||||
|
||||
elif baseline_freq > self.baseline_freq and not upwards:
|
||||
v_offset_current -= voltage_step_size
|
||||
|
||||
elif baseline_freq == self.baseline_freq:
|
||||
return v_offset_current
|
||||
|
||||
# found the edges use them to allow binary search:
|
||||
if upwards:
|
||||
lower_bound = v_offset_current - voltage_step_size
|
||||
upper_bound = v_offset_current
|
||||
else:
|
||||
lower_bound = v_offset_current
|
||||
upper_bound = v_offset_current + voltage_step_size
|
||||
|
||||
while True:
|
||||
middle = lower_bound + (upper_bound - lower_bound)/2
|
||||
# print(self.counter, "measured_freq:", baseline_freq, "wanted_freq:", self.baseline_freq, "current middle:", middle)
|
||||
# self.counter += 1
|
||||
test_model.set_variable("v_offset", middle)
|
||||
base_stimulus = SinusAmplitudeModulationStimulus(self.eod_freq, 0, 0)
|
||||
_, spiketimes = test_model.simulate_fast(base_stimulus, simulation_time)
|
||||
|
||||
if len(spiketimes) < 2:
|
||||
baseline_freq = 0
|
||||
else:
|
||||
baseline_freq = hF.mean_freq_of_spiketimes_after_time_x(spiketimes, simulation_time/2)
|
||||
|
||||
if abs(baseline_freq - self.baseline_freq) < 5:
|
||||
# print("close enough:", baseline_freq, self.baseline_freq, abs(baseline_freq - self.baseline_freq))
|
||||
break
|
||||
elif baseline_freq < self.baseline_freq:
|
||||
lower_bound = middle
|
||||
else:
|
||||
upper_bound = middle
|
||||
|
||||
return middle
|
||||
|
||||
def fit_model_to_data(self, data: CellData):
|
||||
self.calculate_needed_values_from_data(data)
|
||||
return self.fit_model()
|
||||
|
@ -55,35 +55,50 @@ def merge_intensities_similar_to_index(intensities, spiketimes, trans_amplitudes
|
||||
return intensities, spiketimes, trans_amplitudes
|
||||
|
||||
|
||||
def all_calculate_mean_isi_frequencies(spiketimes, time_start, sampling_interval):
|
||||
def all_calculate_mean_isi_frequency_traces(spiketimes, sampling_interval, time_in_ms=True):
|
||||
"""
|
||||
Expects spiketimes to be a 3dim list with the first dimension being the trial
|
||||
the second the count of runs of spikes and the last the individual spikes_times:
|
||||
[[[trial1-run1-spike1, trial1-run1-spike2, ...],[trial1-run2-spike1, ...]],[[trial2-run1-spike1, ...], [..]]]
|
||||
:param spiketimes:
|
||||
:param sampling_interval:
|
||||
:param time_in_ms:
|
||||
:return: the mean frequency trace for each trial and its time trace
|
||||
"""
|
||||
times = []
|
||||
mean_frequencies = []
|
||||
|
||||
for i in range(len(spiketimes)):
|
||||
trial_times = []
|
||||
trial_means = []
|
||||
trial_time_trace = []
|
||||
trial_freq_trace = []
|
||||
for j in range(len(spiketimes[i])):
|
||||
time, isi_freq = calculate_isi_frequency(spiketimes[i][j], time_start, sampling_interval)
|
||||
trial_means.append(isi_freq)
|
||||
trial_times.append(time)
|
||||
time, isi_freq = calculate_time_and_frequency_trace(spiketimes[i][j], sampling_interval, time_in_ms)
|
||||
trial_freq_trace.append(isi_freq)
|
||||
trial_time_trace.append(time)
|
||||
|
||||
time, mean_freq = calculate_mean_frequency(trial_times, trial_means)
|
||||
time, mean_freq = calculate_mean_of_frequency_traces(trial_time_trace, trial_freq_trace, sampling_interval)
|
||||
times.append(time)
|
||||
mean_frequencies.append(mean_freq)
|
||||
|
||||
return times, mean_frequencies
|
||||
|
||||
|
||||
def calculate_isi_frequency(spiketimes, sampling_interval, time_in_ms=True):
|
||||
def calculate_isi_frequency_trace(spiketimes, sampling_interval, time_in_ms=False):
|
||||
"""
|
||||
Calculates the frequency over time according to the inter spike intervals.
|
||||
|
||||
:param spiketimes: time points spikes were measured array_like
|
||||
:param spiketimes: sorted time points spikes were measured array_like
|
||||
:param sampling_interval: the sampling interval in which the frequency should be given back
|
||||
:param time_in_ms: whether the time is in ms or in s for BOTH the spiketimes and the sampling interval
|
||||
:return: an np.array with the isi frequency starting at the time of first spike and ending at the time of the last spike
|
||||
"""
|
||||
|
||||
if len(spiketimes) <= 1:
|
||||
return []
|
||||
|
||||
isis = np.diff(spiketimes)
|
||||
if sampling_interval > min(isis):
|
||||
raise ValueError("The sampling interval is bigger than the some isis! cannot accurately compute the trace.")
|
||||
|
||||
if time_in_ms:
|
||||
isis = isis / 1000
|
||||
@ -91,6 +106,8 @@ def calculate_isi_frequency(spiketimes, sampling_interval, time_in_ms=True):
|
||||
|
||||
full_frequency = np.array([])
|
||||
for isi in isis:
|
||||
if isi < 0:
|
||||
raise ValueError("There was a negative interspike interval, the spiketimes need to be sorted")
|
||||
if isi == 0:
|
||||
warn("An ISI was zero in FiCurve:__calculate_mean_isi_frequency__()")
|
||||
print("ISI was zero:", spiketimes)
|
||||
@ -102,15 +119,40 @@ def calculate_isi_frequency(spiketimes, sampling_interval, time_in_ms=True):
|
||||
return full_frequency
|
||||
|
||||
|
||||
def calculate_mean_frequency(trial_times, trial_freqs):
|
||||
lengths = [len(t) for t in trial_times]
|
||||
shortest = min(lengths)
|
||||
def calculate_time_and_frequency_trace(spiketimes, sampling_interval, time_in_ms=False):
|
||||
frequency = calculate_isi_frequency_trace(spiketimes, sampling_interval, time_in_ms)
|
||||
|
||||
time = np.arange(spiketimes[0], spiketimes[-1], sampling_interval)
|
||||
|
||||
return time, frequency
|
||||
|
||||
|
||||
def calculate_mean_of_frequency_traces(trial_time_traces, trial_frequency_traces, sampling_interval):
|
||||
"""
|
||||
calculates the mean_trace of the given frequency traces -> mean at each time point
|
||||
for traces starting at different times
|
||||
:param trial_time_traces:
|
||||
:param trial_frequency_traces:
|
||||
:param sampling_interval:
|
||||
:return:
|
||||
"""
|
||||
ends = [t[-1] for t in trial_time_traces]
|
||||
starts = [t[0] for t in trial_time_traces]
|
||||
latest_start = max(starts)
|
||||
earliest_end = min(ends)
|
||||
|
||||
shortened_time = np.arange(latest_start, earliest_end+sampling_interval, sampling_interval)
|
||||
|
||||
shortened_freqs = []
|
||||
for i in range(len(trial_frequency_traces)):
|
||||
start_idx = int((latest_start - trial_time_traces[i][0]) / sampling_interval)
|
||||
end_idx = int((earliest_end - trial_time_traces[i][0]) / sampling_interval)
|
||||
|
||||
time = trial_times[0][0:shortest]
|
||||
shortend_freqs = [freq[0:shortest] for freq in trial_freqs]
|
||||
mean_freq = [sum(e) / len(e) for e in zip(*shortend_freqs)]
|
||||
shortened_freqs.append(trial_frequency_traces[i][start_idx:end_idx])
|
||||
|
||||
return time, mean_freq
|
||||
mean_freq = [sum(e) / len(e) for e in zip(*shortened_freqs)]
|
||||
|
||||
return shortened_time, mean_freq
|
||||
|
||||
|
||||
def mean_freq_of_spiketimes_after_time_x(spiketimes, sampling_interval, time_x, time_in_ms=False):
|
||||
@ -119,14 +161,29 @@ def mean_freq_of_spiketimes_after_time_x(spiketimes, sampling_interval, time_x,
|
||||
if len(spiketimes) <= 1:
|
||||
return 0
|
||||
|
||||
freq = calculate_isi_frequency(spiketimes, sampling_interval, time_in_ms)
|
||||
freq = calculate_isi_frequency_trace(spiketimes, sampling_interval, time_in_ms)
|
||||
# returned frequency starts at the
|
||||
idx = int((time_x-spiketimes[0]) / sampling_interval)
|
||||
|
||||
mean_freq = np.mean(freq[idx:])
|
||||
rest_array = freq[idx:]
|
||||
mean_freq = np.mean(rest_array)
|
||||
return mean_freq
|
||||
|
||||
|
||||
def calculate_mean_isi_freq(spiketimes, time_in_ms=False):
|
||||
if len(spiketimes) < 2:
|
||||
return 0
|
||||
|
||||
isis = np.diff(spiketimes)
|
||||
if time_in_ms:
|
||||
isis = isis / 1000
|
||||
freqs = 1 / isis
|
||||
weights = isis / np.min(isis)
|
||||
|
||||
return sum(freqs * weights) / sum(weights)
|
||||
|
||||
|
||||
|
||||
|
||||
# @jit(nopython=True) # only faster at around 30 000 calls
|
||||
def calculate_coefficient_of_variation(spiketimes: np.ndarray) -> float:
|
||||
# CV (stddev of ISI divided by mean ISI (np.diff(spiketimes))
|
||||
|
@ -1,10 +1,65 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
import helperFunctions as hF
|
||||
import time
|
||||
|
||||
def main():
|
||||
pass
|
||||
for freq in [700, 50, 100, 500, 1000]:
|
||||
reps = 1000
|
||||
start = time.time()
|
||||
for i in range(reps):
|
||||
mean_isi = 1 / freq
|
||||
n = 0.7
|
||||
phase_locking_strength = 0.7
|
||||
size = 100000
|
||||
|
||||
final_isis = np.array([])
|
||||
while len(final_isis) < size:
|
||||
|
||||
isis = np.random.normal(mean_isi, mean_isi*n, size)
|
||||
isi_phase = (isis % mean_isi) / mean_isi
|
||||
diff = abs_phase_diff(isi_phase, 0.5)
|
||||
chance = np.random.random(size)
|
||||
|
||||
isis_phase_cleaned = []
|
||||
for i in range(len(diff)):
|
||||
if 1-diff[i]**0.05 > chance[i]:
|
||||
isis_phase_cleaned.append(isis[i])
|
||||
|
||||
final_isis = np.concatenate((final_isis, isis_phase_cleaned))
|
||||
|
||||
spikes = np.cumsum(final_isis)
|
||||
spikes = np.sort(spikes[spikes > 0])
|
||||
clean_isis = np.diff(spikes)
|
||||
|
||||
bins = np.arange(-0.01, 0.01, 0.0001)
|
||||
plt.hist(clean_isis, alpha=0.5, bins=bins)
|
||||
plt.hist(isis, alpha=0.5, bins=bins)
|
||||
plt.show()
|
||||
quit()
|
||||
|
||||
end = time.time()
|
||||
|
||||
print("It took {:.2f} s to simulate 10s of spikes at {} Hz".format(end-start, freq))
|
||||
|
||||
|
||||
def abs_phase_diff(rel_phases:list, ref_phase:float):
|
||||
"""
|
||||
|
||||
:param rel_phases: relative phases as a list of values between 0 and 1
|
||||
:param ref_phase: reference phase to which the difference is calculated (between 0 and 1)
|
||||
:return: list of absolute differences
|
||||
"""
|
||||
|
||||
diff = [abs(min(x-ref_phase, x-ref_phase+1)) for x in rel_phases]
|
||||
|
||||
return diff
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
print(-2.4%0.35, (int(-2.4/0.35)-1)*0.35)
|
||||
|
||||
hF.calculate_isi_frequency_trace([0, 2, 1, 3], 0.5)
|
||||
|
||||
|
||||
#main()
|
||||
|
@ -238,7 +238,8 @@ def binary_search_base_freq(model: LifacNoiseModel, base_stimulus, goal_frequenc
|
||||
def test_v_offset(model: LifacNoiseModel, v_offset, base_stimulus, simulation_length):
|
||||
model.set_variable("v_offset", v_offset)
|
||||
_, spiketimes = model.simulate_fast(base_stimulus, simulation_length)
|
||||
freq = hF.mean_freq_of_spiketimes_after_time_x(spiketimes, 0.005, simulation_length/3)
|
||||
|
||||
freq = hF.mean_freq_of_spiketimes_after_time_x(spiketimes, 0.0005, simulation_length/3)
|
||||
|
||||
return freq
|
||||
|
||||
|
@ -73,7 +73,7 @@ def test_lifac_noise():
|
||||
axes[1].set_title("Voltage trace")
|
||||
axes[1].set_ylabel("voltage")
|
||||
|
||||
t, f = hf.calculate_isi_frequency(model.get_spiketimes(), 0, step_size)
|
||||
t, f = hf.calculate_isi_frequency_trace(model.get_spiketimes(), 0, step_size)
|
||||
axes[2].plot(t, f)
|
||||
axes[2].set_title("ISI frequency trace")
|
||||
axes[2].set_ylabel("Frequency")
|
||||
@ -85,7 +85,7 @@ def test_lifac_noise():
|
||||
print(model.get_adaption_trace()[int(0.1/(0.01/1000))])
|
||||
step_size = model.get_parameters()["step_size"] / 1000
|
||||
time = np.arange(0, total_time, step_size)
|
||||
t, f = hf.calculate_isi_frequency(model.get_spiketimes(), 0, step_size)
|
||||
t, f = hf.calculate_isi_frequency_trace(model.get_spiketimes(), 0, step_size)
|
||||
|
||||
axes[1].plot(time, model.get_voltage_trace())
|
||||
axes[2].plot(t, f)
|
||||
|
241
unittests/testFrequencyFunctions.py
Normal file
241
unittests/testFrequencyFunctions.py
Normal file
@ -0,0 +1,241 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
import helperFunctions as hF
|
||||
import matplotlib.pyplot as plt
|
||||
from warnings import warn
|
||||
|
||||
|
||||
class FrequencyFunctionsTester(unittest.TestCase):
|
||||
|
||||
noise_levels = [0, 0.05, 0.1, 0.2]
|
||||
frequencies = [0, 1, 5, 30, 100, 500, 750, 1000]
|
||||
|
||||
def setUp(self):
|
||||
pass
|
||||
|
||||
def tearDown(self):
|
||||
pass
|
||||
|
||||
def test_calculate_eod_frequency(self):
|
||||
start = 0
|
||||
end = 5
|
||||
step = 0.1 / 1000
|
||||
freqs = [0, 1, 10, 500, 700, 1000]
|
||||
for freq in freqs:
|
||||
time = np.arange(start, end, step)
|
||||
eod = np.sin(freq*(2*np.pi) * time)
|
||||
self.assertEqual(freq, round(hF.calculate_eod_frequency(time, eod), 2))
|
||||
|
||||
def test_mean_freq_of_spiketimes_after_time_x(self):
|
||||
simulation_time = 8
|
||||
for freq in self.frequencies:
|
||||
for n in self.noise_levels:
|
||||
spikes = generate_jittered_spiketimes(freq, n, end=simulation_time)
|
||||
sim_freq = hF.mean_freq_of_spiketimes_after_time_x(spikes, 0.00005, simulation_time/4, time_in_ms=False)
|
||||
|
||||
max_diff = round(n*(10+0.7*np.sqrt(freq)), 2)
|
||||
# print("noise: {:.2f}".format(n), "\texpected: {:.2f}".format(freq), "\tgotten: {:.2f}".format(round(sim_freq, 2)), "\tfreq diff: {:.2f}".format(abs(freq-round(sim_freq, 2))), "\tmax_diff:", max_diff)
|
||||
self.assertTrue(abs(freq-round(sim_freq)) <= max_diff, msg="expected freq: {:.2f} vs calculated: {:.2f}. max diff was {:.2f}".format(freq, sim_freq, max_diff))
|
||||
|
||||
def test_calculate_isi_frequency(self):
|
||||
simulation_time = 1
|
||||
sampling_interval = 0.00005
|
||||
|
||||
for freq in self.frequencies:
|
||||
for n in self.noise_levels:
|
||||
spikes = generate_jittered_spiketimes(freq, n, end=simulation_time)
|
||||
sim_freq = hF.calculate_isi_frequency_trace(spikes, sampling_interval, time_in_ms=False)
|
||||
|
||||
isis = np.diff(spikes)
|
||||
step_length = isis / sampling_interval
|
||||
rounded_step_length = np.around(step_length)
|
||||
expected_length = sum(rounded_step_length)
|
||||
|
||||
length = len(sim_freq)
|
||||
self.assertEqual(expected_length, length)
|
||||
|
||||
def test_calculate_isi_frequency_trace(self):
|
||||
sampling_intervals = [0.00005, 0.001, 0.01, 0.2, 0.5, 1]
|
||||
|
||||
test1 = [0, 1, 2, 3, 4] # 1-1-1-1 only 1s in the result
|
||||
test2 = [0, 1, 3, 5, 6] # 1-2-2-1
|
||||
test3 = [0, 3, 10, 12, 15] # 3-7-2-3
|
||||
pos_tests = [test1, test2, test3]
|
||||
|
||||
test4 = generate_jittered_spiketimes(100, 0.2)
|
||||
test5 = generate_jittered_spiketimes(500, 0.2)
|
||||
test6 = generate_jittered_spiketimes(1000, 0)
|
||||
realistic_tests = [test4, test5, test6]
|
||||
|
||||
test_neg_isi = [0, 3, 4, 2, 5] # should raise error non sorted spiketimes
|
||||
test_too_small_sampling_rate = [0.001, 0.0015, 0.002]
|
||||
neg_tests = [test_neg_isi, test_too_small_sampling_rate]
|
||||
|
||||
for test in pos_tests:
|
||||
for sampling_interval in sampling_intervals:
|
||||
calculated_trace = hF.calculate_isi_frequency_trace(test, sampling_interval, time_in_ms=False)
|
||||
diffs = np.diff(test)
|
||||
j = 0
|
||||
count = 0
|
||||
value = 1/diffs[j]
|
||||
for i in range(len(calculated_trace)):
|
||||
if calculated_trace[i] == value:
|
||||
count += 1
|
||||
else:
|
||||
expected_length = round(diffs[j] / sampling_interval)
|
||||
|
||||
# if there are multiple isis of the same length after each other add them together
|
||||
while expected_length < count and value == 1/diffs[j+1]:
|
||||
j += 1
|
||||
expected_length += round(diffs[j] / sampling_interval, 0)
|
||||
|
||||
self.assertEqual(count, expected_length, msg="Length of isi frequency part is not right: expected {:.1f} vs {:.1f}".format(float(count), expected_length))
|
||||
j += 1
|
||||
value = 1/diffs[j]
|
||||
count = 1
|
||||
|
||||
for test in neg_tests:
|
||||
self.assertRaises(ValueError, hF.calculate_isi_frequency_trace, test, 0.2, False)
|
||||
|
||||
def test_calculate_time_and_frequency_trace(self):
|
||||
|
||||
# !!! the produced frequency trace is tested in the test function for specifically the freq_Trace function
|
||||
sampling_intervals = [0.0001, 0.1, 0.5, 1]
|
||||
|
||||
test1 = [0, 1, 2, 5, 7]
|
||||
test2 = [1, 3, 5, 6, 7, 10]
|
||||
test3 = [-1, 2, 4, 5, 11]
|
||||
|
||||
pos_tests = [test1, test2, test3]
|
||||
|
||||
for sampling_interval in sampling_intervals:
|
||||
for test in pos_tests:
|
||||
time, freq = hF.calculate_time_and_frequency_trace(test, sampling_interval, time_in_ms=False)
|
||||
|
||||
self.assertEqual(test[0], time[0])
|
||||
self.assertEqual(test[-1], round(time[-1]+sampling_interval))
|
||||
|
||||
def test_calculate_mean_of_frequency_traces(self):
|
||||
# TODO expand this test to more than this single test case
|
||||
test1_f = [0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1]
|
||||
test1_t = np.arange(0, 8, 0.5)
|
||||
test2_f = [1, 2, 2, 3, 3, 4]
|
||||
test2_t = np.arange(0.5, 7.5, 0.5)
|
||||
|
||||
time_traces = [test1_t, test2_t]
|
||||
freq_traces = [test1_f, test2_f]
|
||||
time, mean = hF.calculate_mean_of_frequency_traces(time_traces, freq_traces, 0.5)
|
||||
|
||||
expected_time = np.arange(0.5, 7.5, 0.5)
|
||||
|
||||
expected_mean = [0.75, 1.25, 1.25, 2, 2, 2.5]
|
||||
time_equal = np.all([time[i] == expected_time[i] for i in range(len(time))])
|
||||
mean_equal = np.all([mean[i] == expected_mean[i] for i in range(len(mean))])
|
||||
self.assertTrue(time_equal)
|
||||
self.assertTrue(mean_equal, msg="expected:\n" + str(expected_mean) + "\n actual: \n" + str(mean))
|
||||
self.assertEqual(len(expected_mean), len(mean))
|
||||
self.assertEqual(len(expected_time), len(time), msg="expected:\n" + str(expected_time) + "\n actual: \n" + str(time))
|
||||
|
||||
# TODO:
|
||||
# all_calculate_mean_isi_frequency_traces(spiketimes, sampling_interval, time_in_ms=True):
|
||||
|
||||
|
||||
def generate_jittered_spiketimes(frequency, noise_level=0., start=0, end=5, method='normal'):
|
||||
|
||||
if method is 'normal':
|
||||
return normal_dist_jittered_spikes(frequency, noise_level, start, end)
|
||||
|
||||
elif method is 'poisson':
|
||||
if noise_level != 0:
|
||||
warn("Poisson jittered spike trains don't support a noise level! ")
|
||||
return poisson_jittered_spikes(frequency, start, end)
|
||||
|
||||
|
||||
def poisson_jittered_spikes(frequency, start, end):
|
||||
if frequency == 0:
|
||||
return []
|
||||
|
||||
mean_isi = 1 / frequency
|
||||
|
||||
spikes = []
|
||||
for part in np.arange(start, end+mean_isi, mean_isi):
|
||||
num_spikes_in_part = np.random.poisson(1)
|
||||
positions = np.sort(np.random.random(num_spikes_in_part))
|
||||
|
||||
while not __poisson_min_dist_test__(positions):
|
||||
positions = np.sort(np.random.random(num_spikes_in_part))
|
||||
|
||||
for pos in positions:
|
||||
spikes.append(part+pos*mean_isi)
|
||||
|
||||
while spikes[-1] > end:
|
||||
del spikes[-1]
|
||||
|
||||
return spikes
|
||||
|
||||
|
||||
def __poisson_min_dist_test__(positions):
|
||||
if len(positions) > 1:
|
||||
diffs = np.diff(positions)
|
||||
if len(diffs[diffs < 0.0001]) > 0:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def normal_dist_jittered_spikes(frequency, noise_level, start, end):
|
||||
if frequency == 0:
|
||||
return []
|
||||
|
||||
mean_isi = 1 / frequency
|
||||
if noise_level == 0:
|
||||
return np.arange(start, end, mean_isi)
|
||||
|
||||
isis = np.random.normal(mean_isi, noise_level*mean_isi, int((end-start)*1.05/mean_isi))
|
||||
spikes = np.cumsum(isis) + start
|
||||
spikes = np.sort(spikes)
|
||||
|
||||
if spikes[-1] > end:
|
||||
return spikes[spikes < end]
|
||||
|
||||
else:
|
||||
additional_spikes = [spikes[-1] + np.random.normal(mean_isi, noise_level*mean_isi)]
|
||||
|
||||
while additional_spikes[-1] < end:
|
||||
next_isi = np.random.normal(mean_isi, noise_level*mean_isi)
|
||||
additional_spikes.append(additional_spikes[-1] + next_isi)
|
||||
|
||||
additional_spikes = np.sort(np.array(additional_spikes[:-1]))
|
||||
spikes = np.concatenate((spikes, additional_spikes))
|
||||
|
||||
return spikes
|
||||
|
||||
|
||||
def test_distribution():
|
||||
simulation_time = 5
|
||||
freqs = [5, 30, 100, 500, 1000]
|
||||
noise_level = [0.05, 0.1, 0.2, 0.3]
|
||||
repetitions = 1000
|
||||
for freq in freqs:
|
||||
diffs_per_noise = []
|
||||
for n in noise_level:
|
||||
diffs = []
|
||||
print("#### - freq:", freq, "noise level:", n )
|
||||
for reps in range(repetitions):
|
||||
spikes = generate_jittered_spiketimes(freq, n, end=simulation_time)
|
||||
sim_freq = hF.mean_freq_of_spiketimes_after_time_x(spikes, 0.0002, simulation_time / 4, time_in_ms=False)
|
||||
diffs.append(sim_freq-freq)
|
||||
|
||||
diffs_per_noise.append(diffs)
|
||||
|
||||
fig, axs = plt.subplots(1, len(noise_level), figsize=(3.5*len(noise_level), 4), sharex='all')
|
||||
|
||||
for i in range(len(diffs_per_noise)):
|
||||
max_diff = np.max(np.abs(diffs_per_noise[i]))
|
||||
print("Freq: ", freq, "noise: {:.2f}".format(noise_level[i]), "mean: {:.2f}".format(np.mean(diffs_per_noise[i])), "max_diff: {:.4f}".format(max_diff))
|
||||
bins = np.arange(-max_diff, max_diff, 2*max_diff/100)
|
||||
axs[i].hist(diffs_per_noise[i], bins=bins)
|
||||
axs[i].set_title('Noise level: {:.2f}'.format(noise_level[i]))
|
||||
|
||||
plt.show()
|
||||
plt.close()
|
@ -15,16 +15,6 @@ class HelperFunctionsTester(unittest.TestCase):
|
||||
def tearDown(self):
|
||||
pass
|
||||
|
||||
def test_calculate_eod_frequency(self):
|
||||
start = 0
|
||||
end = 5
|
||||
step = 0.1 / 1000
|
||||
freqs = [0, 1, 10, 500, 700, 1000]
|
||||
for freq in freqs:
|
||||
time = np.arange(start, end, step)
|
||||
eod = np.sin(freq*(2*np.pi) * time)
|
||||
self.assertEqual(freq, round(hF.calculate_eod_frequency(time, eod), 2))
|
||||
|
||||
def test__vector_strength__is_1(self):
|
||||
length = 2000
|
||||
rel_spike_times = np.full(length, 0.3)
|
||||
@ -40,91 +30,8 @@ class HelperFunctionsTester(unittest.TestCase):
|
||||
|
||||
self.assertEqual(0, round(hF.__vector_strength__(rel_spike_times, eod_durations), 5))
|
||||
|
||||
def test_mean_freq_of_spiketimes_after_time_x(self):
|
||||
simulation_time = 8
|
||||
for freq in self.frequencies:
|
||||
for n in self.noise_levels:
|
||||
spikes = generate_jittered_spiketimes(freq, n, end=simulation_time)
|
||||
sim_freq = hF.mean_freq_of_spiketimes_after_time_x(spikes, 0.00005, simulation_time/4, time_in_ms=False)
|
||||
|
||||
max_diff = round(n*(10+0.7*np.sqrt(freq)), 2)
|
||||
# print("noise: {:.2f}".format(n), "\texpected: {:.2f}".format(freq), "\tgotten: {:.2f}".format(round(sim_freq, 2)), "\tfreq diff: {:.2f}".format(abs(freq-round(sim_freq, 2))), "\tmax_diff:", max_diff)
|
||||
self.assertTrue(abs(freq-round(sim_freq)) <= max_diff, msg="expected freq: {:.2f} vs calculated: {:.2f}. max diff was {:.2f}".format(freq, sim_freq, max_diff))
|
||||
|
||||
def test_calculate_isi_frequency(self):
|
||||
simulation_time = 1
|
||||
sampling_interval = 0.00005
|
||||
|
||||
for freq in self.frequencies:
|
||||
for n in self.noise_levels:
|
||||
spikes = generate_jittered_spiketimes(freq, n, end=simulation_time)
|
||||
sim_freq = hF.calculate_isi_frequency(spikes, sampling_interval, time_in_ms=False)
|
||||
|
||||
isis = np.diff(spikes)
|
||||
step_length = isis / sampling_interval
|
||||
rounded_step_length = np.around(step_length)
|
||||
expected_length = sum(rounded_step_length)
|
||||
|
||||
length = len(sim_freq)
|
||||
self.assertEqual(expected_length, length)
|
||||
|
||||
|
||||
|
||||
# def test(self):
|
||||
# test_distribution()
|
||||
|
||||
def generate_jittered_spiketimes(frequency, noise_level, start=0, end=5):
|
||||
if frequency == 0:
|
||||
return []
|
||||
|
||||
mean_isi = 1 / frequency
|
||||
if noise_level == 0:
|
||||
return np.arange(start, end, mean_isi)
|
||||
|
||||
spikes = [start]
|
||||
count = 0
|
||||
while True:
|
||||
next_isi = np.random.normal(mean_isi, noise_level*mean_isi)
|
||||
if next_isi <= 0:
|
||||
count += 1
|
||||
continue
|
||||
next_spike = spikes[-1] + next_isi
|
||||
if next_spike > end:
|
||||
break
|
||||
spikes.append(spikes[-1] + next_isi)
|
||||
|
||||
# print("count: {:} percentage of missed: {:.2f}".format(count, count/len(spikes)))
|
||||
if count > 0.01*len(spikes):
|
||||
print("!!! Danger of lowering actual simulated frequency")
|
||||
pass
|
||||
return spikes
|
||||
|
||||
|
||||
def test_distribution():
|
||||
simulation_time = 5
|
||||
freqs = [5, 30, 100, 500, 1000]
|
||||
noise_level = [0.05, 0.1, 0.2, 0.3]
|
||||
repetitions = 1000
|
||||
for freq in freqs:
|
||||
diffs_per_noise = []
|
||||
for n in noise_level:
|
||||
diffs = []
|
||||
print("#### - freq:", freq, "noise level:", n )
|
||||
for reps in range(repetitions):
|
||||
spikes = generate_jittered_spiketimes(freq, n, end=simulation_time)
|
||||
sim_freq = hF.mean_freq_of_spiketimes_after_time_x(spikes, 0.0002, simulation_time / 4, time_in_ms=False)
|
||||
diffs.append(sim_freq-freq)
|
||||
|
||||
diffs_per_noise.append(diffs)
|
||||
|
||||
fig, axs = plt.subplots(1, len(noise_level), figsize=(3.5*len(noise_level), 4), sharex='all')
|
||||
|
||||
for i in range(len(diffs_per_noise)):
|
||||
max_diff = np.max(np.abs(diffs_per_noise[i]))
|
||||
print("Freq: ", freq, "noise: {:.2f}".format(noise_level[i]), "mean: {:.2f}".format(np.mean(diffs_per_noise[i])), "max_diff: {:.4f}".format(max_diff))
|
||||
bins = np.arange(-max_diff, max_diff, 2*max_diff/100)
|
||||
axs[i].hist(diffs_per_noise[i], bins=bins)
|
||||
axs[i].set_title('Noise level: {:.2f}'.format(noise_level[i]))
|
||||
|
||||
plt.show()
|
||||
plt.close()
|
Loading…
Reference in New Issue
Block a user