unittests and debug for sinusoidal stimulus

This commit is contained in:
a.ott 2020-03-03 14:27:04 +01:00
parent 04815de85c
commit 861557da0d
2 changed files with 148 additions and 1 deletions

View File

@ -47,6 +47,40 @@ class SinusAmplitudeModulationStimulus(AbstractStimulus):
# @jit(nopython=True) # makes it slower?
def convert_to_array(carrier_freq, amplitude, modulation_freq, contrast, start_time, duration, time_start, total_time, step_size_s):
full_time = np.arange(time_start, time_start + total_time, step_size_s)
full_carrier = np.sin(2 * np.pi * carrier_freq * full_time)
if start_time > time_start+duration or start_time+duration < time_start:
return full_carrier * amplitude
else:
if start_time >= time_start:
am_start = start_time
else:
am_start = time_start
if time_start + total_time >= start_time + duration:
am_end = start_time + duration
else:
am_end = time_start + total_time
idx_start = (am_start - time_start) / step_size_s
idx_end = (am_end - time_start) / step_size_s
if idx_start != round(idx_start) or idx_end != round(idx_end):
raise ValueError("Didn't calculate integers when searching the start and end index. start:", idx_start, "end:", idx_end)
# print("am_start: {:.0f}, am_end: {:.0f}, length: {:.0f}".format(am_start, am_end, am_end-am_start))
idx_start = int(idx_start)
idx_end = int(idx_end)
am = 1 + contrast * np.sin(2 * np.pi * modulation_freq * full_time[idx_start:idx_end])
values = full_carrier * amplitude
values[idx_start:idx_end] = values[idx_start:idx_end]*am
return values
# if the whole stimulus time has the amplitude modulation just built it at once;
if time_start >= start_time and start_time+duration < time_start+total_time:
carrier = np.sin(2 * np.pi * carrier_freq * np.arange(start_time, total_time - start_time, step_size_s))
@ -55,8 +89,9 @@ def convert_to_array(carrier_freq, amplitude, modulation_freq, contrast, start_t
return values
# if it is split into parts with and without amplitude modulation built it in parts:
values = np.array([], dtype='float32')
values = np.array([])
# there is some time before the modulation starts:
if time_start < start_time:
carrier_before_am = np.sin(2 * np.pi * carrier_freq * np.arange(time_start, start_time, step_size_s))
values = np.concatenate((values, amplitude * carrier_before_am))

View File

@ -0,0 +1,112 @@
from stimuli.SinusAmplitudeModulation import SinusAmplitudeModulationStimulus
import unittest
import numpy as np
import helperFunctions as hF
import matplotlib.pyplot as plt
from warnings import warn
class SinusoidalStimulusTester(unittest.TestCase):
base_frequencies = [0, 10, 100, 1000]
contrasts = [0, 0.5, 1, 1.5]
modulation_frequencies = [0, 5, 10, 100]
step_sizes = [1, 0.5, 0.00005]
time_starts = [0, 2, -2]
durations = [2]
def setUp(self):
pass
def tearDown(self):
pass
def test_consistency_base_frequency(self):
contrast = 0.1
mod_freq = 5
time_start = -1
duration = 10
step_size = 0.00005
for base_freq in self.base_frequencies:
stimulus = SinusAmplitudeModulationStimulus(base_freq, contrast, mod_freq, 0, 8)
self.assertTrue(array_and_time_points_equal(stimulus, time_start, duration, step_size))
def test_consistency_contrast(self):
base_freq = 700
mod_freq = 5
time_start = -1
duration = 10
step_size = 0.00005
for contrast in self.contrasts:
stimulus = SinusAmplitudeModulationStimulus(base_freq, contrast, mod_freq, 0, 8)
self.assertTrue(array_and_time_points_equal(stimulus, time_start, duration, step_size))
def test_consistency_modulation_frequency(self):
contrast = 0.1
base_freq = 700
time_start = -1
duration = 10
step_size = 0.00005
for mod_freq in self.modulation_frequencies:
print(mod_freq)
stimulus = SinusAmplitudeModulationStimulus(base_freq, contrast, mod_freq, 0, 1)
self.assertTrue(array_and_time_points_equal(stimulus, time_start, duration, step_size))
def test_consistency_step_size(self):
contrast = 0.1
base_freq = 700
time_start = -1
duration = 10
mod_freq = 10
for step_size in self.step_sizes:
stimulus = SinusAmplitudeModulationStimulus(base_freq, contrast, mod_freq, 0, 8)
self.assertTrue(array_and_time_points_equal(stimulus, time_start, duration, step_size))
def test_consistency_time_start(self):
contrast = 0.1
base_freq = 700
mod_freq = 10
duration = 10
step_size = 0.00005
for time_start in self.time_starts:
stimulus = SinusAmplitudeModulationStimulus(base_freq, contrast, mod_freq, 0, 8)
self.assertTrue(array_and_time_points_equal(stimulus, time_start, duration, step_size))
def array_and_time_points_equal(stimulus, start, duration, step_size):
precision = 15
array = np.around(stimulus.as_array(start, duration, step_size), precision)
time = np.arange(start, start+duration, step_size)
for i, time_point in enumerate(time):
value = stimulus.value_at_time_in_s(time_point)
if array[i] != np.round(value, precision):
stim_per_point = []
for t in time:
stim_per_point.append(stimulus.value_at_time_in_s(t))
stim_per_point = np.around(np.array(stim_per_point), precision)
fig, axes = plt.subplots(2, 1, sharex="all")
axes[0].plot(time, array, label="array")
axes[0].plot(time, stim_per_point, label="individual")
axes[0].set_title("stimulus values")
axes[0].legend()
axes[1].plot(time, np.array(stim_per_point)-array)
axes[1].set_title("difference")
plt.show()
return False
stim_per_point = []
for t in time:
stim_per_point.append(stimulus.value_at_time_in_s(t))
stim_per_point = np.around(np.array(stim_per_point), precision)
fig, axes = plt.subplots(1, 1, sharex="all")
axes.plot(time, array, label="array")
axes.plot(time, stim_per_point, label="individual")
axes.set_title("stimulus values")
axes.legend()
plt.show()
return True