stuff
This commit is contained in:
parent
40bb5ddd2b
commit
804f94ad0b
@ -94,6 +94,9 @@ class CellData:
|
||||
def get_cell_name(self):
|
||||
return os.path.basename(self.data_path)
|
||||
|
||||
def has_sam_recordings(self):
|
||||
return self.parser.has_sam_recordings()
|
||||
|
||||
def get_baseline_length(self):
|
||||
return self.parser.get_baseline_length()
|
||||
|
||||
|
@ -19,6 +19,9 @@ class AbstractParser:
|
||||
def get_baseline_length(self):
|
||||
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
|
||||
|
||||
def has_sam_recordings(self):
|
||||
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
|
||||
|
||||
def get_fi_curve_contrasts(self):
|
||||
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
|
||||
|
||||
@ -70,6 +73,9 @@ class DatParser(AbstractParser):
|
||||
self.fi_recording_times = []
|
||||
self.sampling_interval = -1
|
||||
|
||||
def has_sam_recordings(self):
|
||||
return exists(self.sam_file)
|
||||
|
||||
def get_baseline_length(self):
|
||||
lengths = []
|
||||
for metadata, key, data in Dl.iload(self.baseline_file):
|
||||
|
33
lines_of_code.py
Normal file
33
lines_of_code.py
Normal file
@ -0,0 +1,33 @@
|
||||
|
||||
import os
|
||||
|
||||
|
||||
def count_lines_folder(folder):
|
||||
lines_of_code = 0
|
||||
files = 0
|
||||
for file in os.listdir(folder):
|
||||
|
||||
if os.path.isdir(file):
|
||||
continue
|
||||
if not file.endswith(".py"):
|
||||
continue
|
||||
# print(file)
|
||||
files += 1
|
||||
with open(os.path.join(folder, file)) as file:
|
||||
lines_of_code += len(file.readlines())
|
||||
return lines_of_code, files
|
||||
|
||||
|
||||
total_lines = 0
|
||||
total_files = 0
|
||||
|
||||
folders = [".", "tests/", "models/", "introduction/", "stimuli/"]
|
||||
|
||||
for folder in folders:
|
||||
lines, files = count_lines_folder(folder)
|
||||
print(folder, files, lines)
|
||||
total_lines += lines
|
||||
total_files += files
|
||||
|
||||
print("Total lines of code:", total_lines)
|
||||
print("Total files with code:", total_files)
|
@ -9,10 +9,13 @@ import helperFunctions as hF
|
||||
from CellData import CellData
|
||||
from ModelFit import ModelFit, get_best_fit
|
||||
import os
|
||||
import shutil
|
||||
|
||||
|
||||
def main():
|
||||
sam_analysis("results/final_2/2011-10-25-ad-invivo-1/")
|
||||
run_sam_analysis_for_all_cells("results/final_2")
|
||||
|
||||
# sam_analysis("results/final_2/2011-10-25-ad-invivo-1/")
|
||||
|
||||
# plot_traces_with_spiketimes()
|
||||
# plot_mean_of_cuts()
|
||||
@ -27,6 +30,21 @@ def main():
|
||||
test_model_response(model, eod_freq, 0.1, np.arange(5, 2500, 5))
|
||||
|
||||
|
||||
def run_sam_analysis_for_all_cells(folder):
|
||||
count = 0
|
||||
for item in os.listdir(folder):
|
||||
cell_folder = os.path.join(folder, item)
|
||||
fit = get_best_fit(cell_folder, use_comparable_error=False)
|
||||
cell_data = fit.get_cell_data()
|
||||
|
||||
if cell_data.has_sam_recordings():
|
||||
count += 1
|
||||
# print("Fit quality:", fit.get_fit_routine_error())
|
||||
sam_analysis(cell_folder)
|
||||
print(count)
|
||||
|
||||
|
||||
|
||||
def test_model_response(model: LifacNoiseModel, eod_freq, contrast, modulation_frequencies):
|
||||
|
||||
stds = []
|
||||
@ -182,11 +200,11 @@ def sam_analysis(fit_path):
|
||||
# TODO problem of cutting the pdf as in some cases the pdf is shorter than 1 modulation frequency period!
|
||||
# length info wrong ? always at least one period?
|
||||
|
||||
if 1/mod_freq > durations[0] / 4:
|
||||
print("skipped mod_freq: {}".format(mod_freq))
|
||||
print("Duration: {} while mod_freq period: {:.2f}".format(durations[0], 1/mod_freq))
|
||||
print("Maybe long enough duration? unique durations:", u_durations)
|
||||
continue
|
||||
# if 1/mod_freq > durations[0] / 4:
|
||||
# print("skipped mod_freq: {}".format(mod_freq))
|
||||
# print("Duration: {} while mod_freq period: {:.2f}".format(durations[0], 1/mod_freq))
|
||||
# print("Maybe long enough duration? unique durations:", u_durations)
|
||||
# continue
|
||||
mfreq_data = {}
|
||||
cell_means = []
|
||||
model_means = []
|
||||
@ -196,24 +214,32 @@ def sam_analysis(fit_path):
|
||||
for i in range(len(delta_freqs)):
|
||||
if delta_freqs[i] != mod_freq:
|
||||
continue
|
||||
|
||||
if len(spiketimes[i]) == 0:
|
||||
print("No spiketimes found at index!")
|
||||
continue
|
||||
if len(spiketimes[i]) > 1:
|
||||
print("There are more spiketimes in one 'point'! Only the first was used! ")
|
||||
|
||||
|
||||
spikes = spiketimes[i][0]
|
||||
|
||||
cell_pdf = spiketimes_calculate_pdf(spikes, step_size)
|
||||
|
||||
cell_cuts = cut_pdf_into_periods(cell_pdf, 1/mod_freq, step_size, factor=1.0)
|
||||
cell_cuts = cut_pdf_into_periods(cell_pdf, 1/mod_freq, step_size)
|
||||
cell_mean = np.mean(cell_cuts, axis=0)
|
||||
cell_means.append(cell_mean)
|
||||
|
||||
stimulus = SAM(eod_freq, contrasts[i] / 100, mod_freq)
|
||||
v1, spikes_model = model.simulate(stimulus, durations[i] * 4)
|
||||
v1, spikes_model = model.simulate(stimulus, 10)
|
||||
model_pdf = spiketimes_calculate_pdf(spikes_model, step_size)
|
||||
model_cuts = cut_pdf_into_periods(model_pdf, 1/mod_freq, step_size, factor=1.0)
|
||||
model_cuts = cut_pdf_into_periods(model_pdf, 1/mod_freq, step_size)
|
||||
model_mean = np.mean(model_cuts, axis=0)
|
||||
model_means.append(model_mean)
|
||||
|
||||
min_length = min(min([len(cm) for cm in cell_means]), min([len(mm) for mm in model_means]))
|
||||
for i in range(len(cell_means)):
|
||||
cell_means[i] = cell_means[i][:min_length]
|
||||
model_means[i] = model_means[i][:min_length]
|
||||
final_cell_mean = np.mean(cell_means, axis=0)
|
||||
final_model_mean = np.mean(model_means, axis=0)
|
||||
cell_stds.append(np.std(final_cell_mean))
|
||||
@ -225,53 +251,53 @@ def sam_analysis(fit_path):
|
||||
final_model_mean_phase_corrected = np.roll(final_model_mean, approx_offset)
|
||||
|
||||
# PLOT EVERY MOD FREQ
|
||||
fig, axes = plt.subplots(1, 5, figsize=(15, 5), sharex=True)
|
||||
for c in cell_means:
|
||||
axes[0].plot(c, color="grey", alpha=0.2)
|
||||
axes[0].plot(np.mean(cell_means, axis=0), color="black")
|
||||
axes[0].set_title("Cell response")
|
||||
axis_cell = axes[0].axis()
|
||||
|
||||
for m in model_means:
|
||||
axes[1].plot(m, color="grey", alpha=0.2)
|
||||
axes[1].plot(np.mean(model_means, axis=0), color="black")
|
||||
axes[1].set_title("Model response")
|
||||
axis_model = axes[1].axis()
|
||||
ylim_top = max(axis_cell[3], axis_model[3])
|
||||
axes[1].set_ylim(0, ylim_top)
|
||||
axes[0].set_ylim(0, ylim_top)
|
||||
axes[2].set_ylim(0, ylim_top)
|
||||
|
||||
|
||||
axes[2].plot(final_cell_mean, label="cell")
|
||||
axes[2].plot(final_model_mean, label="model")
|
||||
axes[2].plot(final_model_mean_phase_corrected, label="model p-cor")
|
||||
axes[2].legend()
|
||||
axes[2].set_title("cell-model overlapped")
|
||||
axes[3].plot((final_model_mean - final_cell_mean) / final_cell_mean, label="normal")
|
||||
axes[3].plot((final_model_mean_phase_corrected- final_cell_mean) / final_cell_mean, label="phase cor")
|
||||
axes[3].set_title("rel. error")
|
||||
axes[3].legend()
|
||||
axes[4].plot(final_model_mean - final_cell_mean, label="normal")
|
||||
axes[4].plot(final_model_mean_phase_corrected - final_cell_mean, label="phase cor")
|
||||
axes[4].set_title("abs. error (Hz)")
|
||||
axes[4].legend()
|
||||
|
||||
fig.suptitle("modulation frequency: {}".format(mod_freq))
|
||||
|
||||
# plt.tight_layout()
|
||||
plt.show()
|
||||
plt.close()
|
||||
# fig, axes = plt.subplots(1, 5, figsize=(15, 5), sharex=True)
|
||||
# for c in cell_means:
|
||||
# axes[0].plot(c, color="grey", alpha=0.2)
|
||||
# axes[0].plot(np.mean(cell_means, axis=0), color="black")
|
||||
# axes[0].set_title("Cell response")
|
||||
# axis_cell = axes[0].axis()
|
||||
#
|
||||
# for m in model_means:
|
||||
# axes[1].plot(m, color="grey", alpha=0.2)
|
||||
# axes[1].plot(np.mean(model_means, axis=0), color="black")
|
||||
# axes[1].set_title("Model response")
|
||||
# axis_model = axes[1].axis()
|
||||
# ylim_top = max(axis_cell[3], axis_model[3])
|
||||
# axes[1].set_ylim(0, ylim_top)
|
||||
# axes[0].set_ylim(0, ylim_top)
|
||||
# axes[2].set_ylim(0, ylim_top)
|
||||
#
|
||||
# axes[2].plot(final_cell_mean, label="cell")
|
||||
# axes[2].plot(final_model_mean, label="model")
|
||||
# axes[2].plot(final_model_mean_phase_corrected, label="model p-cor")
|
||||
# axes[2].legend()
|
||||
# axes[2].set_title("cell-model overlapped")
|
||||
# axes[3].plot((final_model_mean - final_cell_mean) / final_cell_mean, label="normal")
|
||||
# axes[3].plot((final_model_mean_phase_corrected- final_cell_mean) / final_cell_mean, label="phase cor")
|
||||
# axes[3].set_title("rel. error")
|
||||
# axes[3].legend()
|
||||
# axes[4].plot(final_model_mean - final_cell_mean, label="normal")
|
||||
# axes[4].plot(final_model_mean_phase_corrected - final_cell_mean, label="phase cor")
|
||||
# axes[4].set_title("abs. error (Hz)")
|
||||
# axes[4].legend()
|
||||
#
|
||||
# fig.suptitle("modulation frequency: {}".format(mod_freq))
|
||||
#
|
||||
# # plt.tight_layout()
|
||||
# # plt.show()
|
||||
# plt.close()
|
||||
|
||||
fig, ax = plt.subplots(1, 1)
|
||||
|
||||
ax.plot(u_delta_freqs, cell_stds, label="cell stds")
|
||||
ax.plot(u_delta_freqs, model_stds, label="model stds")
|
||||
ax.plot(u_delta_freqs[-len(cell_stds):], cell_stds, label="cell stds")
|
||||
ax.plot(u_delta_freqs[-len(model_stds):], model_stds, label="model stds")
|
||||
ax.set_title("response modulation depth")
|
||||
ax.set_xlabel("Modulation frequency")
|
||||
ax.set_ylabel("STD")
|
||||
ax.legend()
|
||||
plt.show()
|
||||
plt.savefig("figures/sam/" + cell_data.get_cell_name() + ".png")
|
||||
# plt.show()
|
||||
plt.close()
|
||||
|
||||
|
||||
@ -335,14 +361,16 @@ def approximate_axon_delay_in_idx(cell_data, model):
|
||||
|
||||
cell_pdf = spiketimes_calculate_pdf(spikes, step_size)
|
||||
|
||||
cell_cuts = cut_pdf_into_periods(cell_pdf, 1/mod_freq, step_size, factor=1.0)
|
||||
cell_cuts = cut_pdf_into_periods(cell_pdf, 1/mod_freq, step_size)
|
||||
if len(cell_cuts) == 0:
|
||||
continue
|
||||
cell_mean = np.mean(cell_cuts, axis=0)
|
||||
cell_means.append(cell_mean)
|
||||
|
||||
stimulus = SAM(eod_freq, contrasts[i] / 100, mod_freq)
|
||||
v1, spikes_model = model.simulate(stimulus, durations[i] * 4)
|
||||
model_pdf = spiketimes_calculate_pdf(spikes_model, step_size)
|
||||
model_cuts = cut_pdf_into_periods(model_pdf, 1/mod_freq, step_size, factor=1.0)
|
||||
model_cuts = cut_pdf_into_periods(model_pdf, 1/mod_freq, step_size)
|
||||
model_mean = np.mean(model_cuts, axis=0)
|
||||
model_means.append(model_mean)
|
||||
|
||||
@ -355,7 +383,10 @@ def approximate_axon_delay_in_idx(cell_data, model):
|
||||
axon_delays.append(offset)
|
||||
|
||||
mean_delay = np.mean(axon_delays)
|
||||
return int(round(mean_delay))
|
||||
if np.isnan(mean_delay):
|
||||
return 0
|
||||
else:
|
||||
return int(round(mean_delay))
|
||||
|
||||
|
||||
def generate_pdf(model, stimulus, trials=4, sim_length=3, kernel_width=0.005):
|
||||
@ -393,25 +424,27 @@ def spiketimes_calculate_pdf(spikes, step_size, kernel_width=0.001):
|
||||
return rate
|
||||
|
||||
|
||||
def cut_pdf_into_periods(pdf, period, step_size, factor=1.5):
|
||||
def cut_pdf_into_periods(pdf, period, step_size, factor=0.0):
|
||||
|
||||
if period < 0:
|
||||
print("cut_pdf_into_periods(): Period was negative! Absolute value taken to continue")
|
||||
# print("cut_pdf_into_periods(): Period was negative! Absolute value taken to continue")
|
||||
period = abs(period)
|
||||
|
||||
if period / step_size > len(pdf):
|
||||
return [pdf]
|
||||
|
||||
idx_period_length = int(period/float(step_size))
|
||||
offset_per_step = period/float(step_size) - idx_period_length
|
||||
cut_length = int(period / float(step_size) * factor)
|
||||
num_of_cuts = int(len(pdf) / (idx_period_length+offset_per_step))
|
||||
idx_period_length = int(period / float(step_size))
|
||||
offset_per_step = period / float(step_size) - idx_period_length
|
||||
cut_length = idx_period_length + int(factor * idx_period_length)
|
||||
num_of_cuts = int(len(pdf) / (idx_period_length + offset_per_step))
|
||||
|
||||
if len(pdf) - (num_of_cuts * idx_period_length + (num_of_cuts * offset_per_step)) < cut_length - idx_period_length:
|
||||
num_of_cuts -= 1
|
||||
|
||||
if num_of_cuts <= 1:
|
||||
raise RuntimeError("Probability density function to short to cut.")
|
||||
if idx_period_length * 0.9 > len(pdf):
|
||||
return []
|
||||
# raise RuntimeError("SAM stimulus is too short for the given mod freq period.")
|
||||
|
||||
if cut_length > len(pdf) or num_of_cuts < 1:
|
||||
return [pdf]
|
||||
|
||||
cuts = np.zeros((num_of_cuts-1, cut_length))
|
||||
for i in np.arange(1, num_of_cuts, 1):
|
||||
offset_correction = int(offset_per_step * i)
|
||||
|
Loading…
Reference in New Issue
Block a user