add prototype to plot sam pdf comparisions cell-model

This commit is contained in:
a.ott 2020-06-04 17:12:15 +02:00
parent 13c807f921
commit 7077c5b8e6

View File

@ -4,6 +4,7 @@ from models.LIFACnoise import LifacNoiseModel
import numpy as np
import matplotlib.pyplot as plt
import helperFunctions as hF
from CellData import CellData
def main():
@ -12,8 +13,23 @@ def main():
'v_base': 0, 'step_size': 5e-05, 'dend_tau': 0.0008667253013050408, 'v_zero': 0, 'v_offset': -6.25,
'noise_strength': 0.03337309379328535, 'a_zero': 2, 'threshold': 1, 'delta_a': 0.0726267312975076}
eod_freq = 658
cell_data = CellData("./data/2012-12-13-ao-invivo-1/")
model = LifacNoiseModel(parameters)
mean_duration = np.mean(cell_data.get_sam_durations())
contrasts = cell_data.get_sam_contrasts()
spiketimes = cell_data.get_sam_spiketimes()
for i, m_freq in enumerate(cell_data.get_sam_delta_frequencies()):
stimulus = SAM(eod_freq, contrasts[i], m_freq)
prob_desnity_function_model = generate_pdf(model, stimulus, sim_length=mean_duration)
for spikes in spiketimes[i]:
prob_density_cell = spiketimes_calculate_pdf(spikes, cell_data.get_sampling_interval())
plt.plot(prob_density_cell)
plt.plot(prob_desnity_function_model)
plt.show()
plt.close()
# __init__(carrier_frequency, contrast, modulation_frequency, start_time=0, duration=np.inf, amplitude=1)
mod_freqs = np.arange(-60, eod_freq*4 + 61, 10)
@ -58,6 +74,19 @@ def generate_pdf(model, stimulus, trials=4, sim_length=3, kernel_width=0.005):
return mean_rate
def spiketimes_calculate_pdf(spikes, step_size, kernel_width=0.005):
length = int(spikes[-1] / step_size)+1
binary = np.zeros(length)
spikes = [int(s / step_size) for s in spikes]
for s_idx in spikes:
binary[s_idx] = 1
kernel = gaussian_kernel(kernel_width, step_size)
rate = np.convolve(binary, kernel, mode='same')
return rate
def gaussian_kernel(sigma, dt):
x = np.arange(-4. * sigma, 4. * sigma, dt)
y = np.exp(-0.5 * (x / sigma) ** 2) / np.sqrt(2. * np.pi) / sigma