add prototype to plot sam pdf comparisions cell-model
This commit is contained in:
parent
13c807f921
commit
7077c5b8e6
@ -4,6 +4,7 @@ from models.LIFACnoise import LifacNoiseModel
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import helperFunctions as hF
|
import helperFunctions as hF
|
||||||
|
from CellData import CellData
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
@ -12,8 +13,23 @@ def main():
|
|||||||
'v_base': 0, 'step_size': 5e-05, 'dend_tau': 0.0008667253013050408, 'v_zero': 0, 'v_offset': -6.25,
|
'v_base': 0, 'step_size': 5e-05, 'dend_tau': 0.0008667253013050408, 'v_zero': 0, 'v_offset': -6.25,
|
||||||
'noise_strength': 0.03337309379328535, 'a_zero': 2, 'threshold': 1, 'delta_a': 0.0726267312975076}
|
'noise_strength': 0.03337309379328535, 'a_zero': 2, 'threshold': 1, 'delta_a': 0.0726267312975076}
|
||||||
eod_freq = 658
|
eod_freq = 658
|
||||||
|
cell_data = CellData("./data/2012-12-13-ao-invivo-1/")
|
||||||
model = LifacNoiseModel(parameters)
|
model = LifacNoiseModel(parameters)
|
||||||
|
mean_duration = np.mean(cell_data.get_sam_durations())
|
||||||
|
contrasts = cell_data.get_sam_contrasts()
|
||||||
|
spiketimes = cell_data.get_sam_spiketimes()
|
||||||
|
for i, m_freq in enumerate(cell_data.get_sam_delta_frequencies()):
|
||||||
|
|
||||||
|
stimulus = SAM(eod_freq, contrasts[i], m_freq)
|
||||||
|
prob_desnity_function_model = generate_pdf(model, stimulus, sim_length=mean_duration)
|
||||||
|
for spikes in spiketimes[i]:
|
||||||
|
prob_density_cell = spiketimes_calculate_pdf(spikes, cell_data.get_sampling_interval())
|
||||||
|
|
||||||
|
plt.plot(prob_density_cell)
|
||||||
|
plt.plot(prob_desnity_function_model)
|
||||||
|
plt.show()
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
|
||||||
# __init__(carrier_frequency, contrast, modulation_frequency, start_time=0, duration=np.inf, amplitude=1)
|
# __init__(carrier_frequency, contrast, modulation_frequency, start_time=0, duration=np.inf, amplitude=1)
|
||||||
mod_freqs = np.arange(-60, eod_freq*4 + 61, 10)
|
mod_freqs = np.arange(-60, eod_freq*4 + 61, 10)
|
||||||
@ -58,6 +74,19 @@ def generate_pdf(model, stimulus, trials=4, sim_length=3, kernel_width=0.005):
|
|||||||
return mean_rate
|
return mean_rate
|
||||||
|
|
||||||
|
|
||||||
|
def spiketimes_calculate_pdf(spikes, step_size, kernel_width=0.005):
|
||||||
|
length = int(spikes[-1] / step_size)+1
|
||||||
|
binary = np.zeros(length)
|
||||||
|
spikes = [int(s / step_size) for s in spikes]
|
||||||
|
for s_idx in spikes:
|
||||||
|
binary[s_idx] = 1
|
||||||
|
|
||||||
|
kernel = gaussian_kernel(kernel_width, step_size)
|
||||||
|
rate = np.convolve(binary, kernel, mode='same')
|
||||||
|
|
||||||
|
return rate
|
||||||
|
|
||||||
|
|
||||||
def gaussian_kernel(sigma, dt):
|
def gaussian_kernel(sigma, dt):
|
||||||
x = np.arange(-4. * sigma, 4. * sigma, dt)
|
x = np.arange(-4. * sigma, 4. * sigma, dt)
|
||||||
y = np.exp(-0.5 * (x / sigma) ** 2) / np.sqrt(2. * np.pi) / sigma
|
y = np.exp(-0.5 * (x / sigma) ** 2) / np.sqrt(2. * np.pi) / sigma
|
||||||
|
Loading…
Reference in New Issue
Block a user