add interface about available info of model (V, spiketimes, frequency), move parameter functions to abstractmodel
This commit is contained in:
parent
5d137ae88e
commit
3921a55761
@ -1,9 +1,93 @@
|
||||
|
||||
from stimuli.AbstractStimulus import AbstractStimulus
|
||||
|
||||
|
||||
class AbstractModel:
|
||||
|
||||
# TODO what information about the model does the ModelParser need to be able to simulate the right kind of data
|
||||
# for further analysis in cell_data/fi_curve etc.
|
||||
# for further analysis in cell_data/fi_curve etc.
|
||||
|
||||
# TODO change key + values list to a dict
|
||||
KEYS = []
|
||||
VALUES = []
|
||||
|
||||
def __init__(self, params: dict = None):
|
||||
self.parameters = {}
|
||||
if params is None:
|
||||
self._set_default_parameters()
|
||||
else:
|
||||
self._test_given_parameters(params)
|
||||
self.set_parameters(params)
|
||||
|
||||
def simulates_voltage_trace(self) -> bool:
|
||||
raise NotImplementedError("NOT IMPLEMENTED")
|
||||
|
||||
def simulates_frequency(self) -> bool:
|
||||
raise NotImplementedError("NOT IMPLEMENTED")
|
||||
|
||||
def simulates_spiketimes(self) -> bool:
|
||||
raise NotImplementedError("NOT IMPLEMENTED")
|
||||
|
||||
def simulate(self, stimulus: AbstractStimulus, total_time_s):
|
||||
"""
|
||||
Simulate the given stimulus in the model
|
||||
and simulate up to the given total time
|
||||
and saves the simulated data in the model.
|
||||
|
||||
:param stimulus: given stimulus
|
||||
:param total_time_s: time to simulate
|
||||
:return: depending on availability: [voltage, spiketimes, frequency]
|
||||
"""
|
||||
raise NotImplementedError("NOT IMPLEMENTED")
|
||||
|
||||
def get_voltage_trace(self):
|
||||
raise NotImplementedError("NOT IMPLEMENTED")
|
||||
|
||||
def get_spiketimes(self):
|
||||
raise NotImplementedError("NOT IMPLEMENTED")
|
||||
|
||||
def get_frequency(self):
|
||||
raise NotImplementedError("NOT IMPLEMENTED")
|
||||
|
||||
def min_stimulus_strength_to_spike(self):
|
||||
"""
|
||||
return the minimal stimulus strength needed for the model to spike
|
||||
:return: min stimulus strength to spike
|
||||
"""
|
||||
raise NotImplementedError("NOT IMPLEMENTED")
|
||||
|
||||
def get_sampling_interval(self):
|
||||
"""
|
||||
return the "sampling" interval of the model: the time step the model simulates by
|
||||
:return: the sampling interval
|
||||
"""
|
||||
raise NotImplementedError("NOT IMPLEMENTED")
|
||||
|
||||
def set_parameters(self, params):
|
||||
self._test_given_parameters(params)
|
||||
|
||||
for k in params.keys():
|
||||
self.parameters[k] = params[k]
|
||||
|
||||
for i in range(len(self.KEYS)):
|
||||
if self.KEYS[i] not in self.parameters.keys():
|
||||
self.parameters[self.KEYS[i]] = self.VALUES[i]
|
||||
|
||||
def get_parameters(self):
|
||||
return self.parameters
|
||||
|
||||
def set_variable(self, key, value):
|
||||
if key not in self.KEYS:
|
||||
raise ValueError("Given key is unknown!\n"
|
||||
"Please check spelling and refer to list LIFAC.KEYS.")
|
||||
self.parameters[key] = value
|
||||
|
||||
def _set_default_parameters(self):
|
||||
for i in range(len(self.KEYS)):
|
||||
self.parameters[self.KEYS[i]] = self.VALUES[i]
|
||||
|
||||
def _test_given_parameters(self, params):
|
||||
for k in params.keys():
|
||||
if k not in self.KEYS:
|
||||
err_msg = "Unknown key in the given parameters:" + str(k)
|
||||
raise ValueError(err_msg)
|
@ -7,22 +7,20 @@ import numpy as np
|
||||
class LIFACModel(AbstractModel):
|
||||
# all times in milliseconds
|
||||
KEYS = ["mem_res", "mem_tau", "v_base", "v_zero", "threshold", "step_size", "delta_a", "tau_a"]
|
||||
VALUES = [100 * 1000000, 0.1 * 200, 0, 0, 10, 0.01, 1, 200]
|
||||
VALUES = [100 * 1000000, 0.1 * 200, 0, 0, 10, 0.01, 1, 20]
|
||||
|
||||
# membrane time constant tau = mem_cap*mem_res
|
||||
def __init__(self, params: dict = None):
|
||||
self.parameters = {}
|
||||
if params is None:
|
||||
self._set_default_parameters()
|
||||
else:
|
||||
self._test_given_parameters(params)
|
||||
self.set_parameters(params)
|
||||
|
||||
self.last_v = []
|
||||
self.last_adaption = []
|
||||
self.last_spiketimes = []
|
||||
|
||||
def __call__(self, stimulus: AbstractStimulus, total_time_s):
|
||||
super().__init__(params)
|
||||
|
||||
self.voltage_trace = []
|
||||
self.adaption_trace = []
|
||||
self.spiketimes = []
|
||||
self.stimulus = None
|
||||
# self.frequency_trace = []
|
||||
|
||||
def simulate(self, stimulus: AbstractStimulus, total_time_s):
|
||||
self.stimulus = stimulus
|
||||
output_voltage = []
|
||||
adaption = []
|
||||
spiketimes = []
|
||||
@ -44,9 +42,9 @@ class LIFACModel(AbstractModel):
|
||||
current_v = v_next
|
||||
current_a = a_next
|
||||
|
||||
self.last_v = output_voltage
|
||||
self.last_adaption = adaption
|
||||
self.last_spiketimes = spiketimes
|
||||
self.voltage_trace = output_voltage
|
||||
self.adaption_trace = adaption
|
||||
self.spiketimes = spiketimes
|
||||
|
||||
return output_voltage, spiketimes
|
||||
|
||||
@ -62,6 +60,8 @@ class LIFACModel(AbstractModel):
|
||||
return current_a + (step_size * (-current_a)) / self.parameters["tau_a"]
|
||||
|
||||
def set_parameters(self, params):
|
||||
self._test_given_parameters(params)
|
||||
|
||||
for k in params.keys():
|
||||
self.parameters[k] = params[k]
|
||||
|
||||
@ -87,3 +87,41 @@ class LIFACModel(AbstractModel):
|
||||
if k not in self.KEYS:
|
||||
err_msg = "Unknown key in the given parameters:" + str(k)
|
||||
raise ValueError(err_msg)
|
||||
|
||||
def min_stimulus_strength_to_spike(self):
|
||||
return self.parameters["threshold"] - self.parameters["v_base"]
|
||||
|
||||
def get_sampling_interval(self):
|
||||
return self.parameters["step_size"]
|
||||
|
||||
def get_frequency(self):
|
||||
# TODO also change simulates_frequency() if any calculation is added!
|
||||
raise NotImplementedError("No calculation implemented yet for the frequency.")
|
||||
|
||||
def get_spiketimes(self):
|
||||
return self.spiketimes
|
||||
|
||||
def get_voltage_trace(self):
|
||||
return self.voltage_trace
|
||||
|
||||
def get_adaption_trace(self):
|
||||
return self.adaption_trace
|
||||
|
||||
def simulates_frequency(self) -> bool:
|
||||
return False
|
||||
|
||||
def simulates_spiketimes(self) -> bool:
|
||||
return True
|
||||
|
||||
def simulates_voltage_trace(self) -> bool:
|
||||
return True
|
||||
|
||||
def get_recording_times(self):
|
||||
# [delay, stimulus_start, stimulus_duration, time_to_end]
|
||||
self.stimulus = AbstractStimulus()
|
||||
delay = 0
|
||||
start = self.stimulus.get_stimulus_start_s()
|
||||
duration = self.stimulus.get_stimulus_duration_s()
|
||||
total_time = len(self.voltage_trace) / self.parameters["step_size"]
|
||||
|
||||
return [delay, start, duration, total_time]
|
||||
|
Loading…
Reference in New Issue
Block a user