add interface about available info of model (V, spiketimes, frequency), move parameter functions to abstractmodel

This commit is contained in:
a.ott 2020-01-15 14:39:26 +01:00
parent 5d137ae88e
commit 3921a55761
2 changed files with 140 additions and 18 deletions

View File

@ -1,9 +1,93 @@
from stimuli.AbstractStimulus import AbstractStimulus
class AbstractModel:
# TODO what information about the model does the ModelParser need to be able to simulate the right kind of data
# for further analysis in cell_data/fi_curve etc.
# TODO change key + values list to a dict
KEYS = []
VALUES = []
def __init__(self, params: dict = None):
self.parameters = {}
if params is None:
self._set_default_parameters()
else:
self._test_given_parameters(params)
self.set_parameters(params)
def simulates_voltage_trace(self) -> bool:
raise NotImplementedError("NOT IMPLEMENTED")
def simulates_frequency(self) -> bool:
raise NotImplementedError("NOT IMPLEMENTED")
def simulates_spiketimes(self) -> bool:
raise NotImplementedError("NOT IMPLEMENTED")
def simulate(self, stimulus: AbstractStimulus, total_time_s):
"""
Simulate the given stimulus in the model
and simulate up to the given total time
and saves the simulated data in the model.
:param stimulus: given stimulus
:param total_time_s: time to simulate
:return: depending on availability: [voltage, spiketimes, frequency]
"""
raise NotImplementedError("NOT IMPLEMENTED")
def get_voltage_trace(self):
raise NotImplementedError("NOT IMPLEMENTED")
def get_spiketimes(self):
raise NotImplementedError("NOT IMPLEMENTED")
def get_frequency(self):
raise NotImplementedError("NOT IMPLEMENTED")
def min_stimulus_strength_to_spike(self):
"""
return the minimal stimulus strength needed for the model to spike
:return: min stimulus strength to spike
"""
raise NotImplementedError("NOT IMPLEMENTED")
def get_sampling_interval(self):
"""
return the "sampling" interval of the model: the time step the model simulates by
:return: the sampling interval
"""
raise NotImplementedError("NOT IMPLEMENTED")
def set_parameters(self, params):
self._test_given_parameters(params)
for k in params.keys():
self.parameters[k] = params[k]
for i in range(len(self.KEYS)):
if self.KEYS[i] not in self.parameters.keys():
self.parameters[self.KEYS[i]] = self.VALUES[i]
def get_parameters(self):
return self.parameters
def set_variable(self, key, value):
if key not in self.KEYS:
raise ValueError("Given key is unknown!\n"
"Please check spelling and refer to list LIFAC.KEYS.")
self.parameters[key] = value
def _set_default_parameters(self):
for i in range(len(self.KEYS)):
self.parameters[self.KEYS[i]] = self.VALUES[i]
def _test_given_parameters(self, params):
for k in params.keys():
if k not in self.KEYS:
err_msg = "Unknown key in the given parameters:" + str(k)
raise ValueError(err_msg)

View File

@ -7,22 +7,20 @@ import numpy as np
class LIFACModel(AbstractModel):
# all times in milliseconds
KEYS = ["mem_res", "mem_tau", "v_base", "v_zero", "threshold", "step_size", "delta_a", "tau_a"]
VALUES = [100 * 1000000, 0.1 * 200, 0, 0, 10, 0.01, 1, 200]
VALUES = [100 * 1000000, 0.1 * 200, 0, 0, 10, 0.01, 1, 20]
# membrane time constant tau = mem_cap*mem_res
def __init__(self, params: dict = None):
self.parameters = {}
if params is None:
self._set_default_parameters()
else:
self._test_given_parameters(params)
self.set_parameters(params)
super().__init__(params)
self.last_v = []
self.last_adaption = []
self.last_spiketimes = []
self.voltage_trace = []
self.adaption_trace = []
self.spiketimes = []
self.stimulus = None
# self.frequency_trace = []
def __call__(self, stimulus: AbstractStimulus, total_time_s):
def simulate(self, stimulus: AbstractStimulus, total_time_s):
self.stimulus = stimulus
output_voltage = []
adaption = []
spiketimes = []
@ -44,9 +42,9 @@ class LIFACModel(AbstractModel):
current_v = v_next
current_a = a_next
self.last_v = output_voltage
self.last_adaption = adaption
self.last_spiketimes = spiketimes
self.voltage_trace = output_voltage
self.adaption_trace = adaption
self.spiketimes = spiketimes
return output_voltage, spiketimes
@ -62,6 +60,8 @@ class LIFACModel(AbstractModel):
return current_a + (step_size * (-current_a)) / self.parameters["tau_a"]
def set_parameters(self, params):
self._test_given_parameters(params)
for k in params.keys():
self.parameters[k] = params[k]
@ -87,3 +87,41 @@ class LIFACModel(AbstractModel):
if k not in self.KEYS:
err_msg = "Unknown key in the given parameters:" + str(k)
raise ValueError(err_msg)
def min_stimulus_strength_to_spike(self):
return self.parameters["threshold"] - self.parameters["v_base"]
def get_sampling_interval(self):
return self.parameters["step_size"]
def get_frequency(self):
# TODO also change simulates_frequency() if any calculation is added!
raise NotImplementedError("No calculation implemented yet for the frequency.")
def get_spiketimes(self):
return self.spiketimes
def get_voltage_trace(self):
return self.voltage_trace
def get_adaption_trace(self):
return self.adaption_trace
def simulates_frequency(self) -> bool:
return False
def simulates_spiketimes(self) -> bool:
return True
def simulates_voltage_trace(self) -> bool:
return True
def get_recording_times(self):
# [delay, stimulus_start, stimulus_duration, time_to_end]
self.stimulus = AbstractStimulus()
delay = 0
start = self.stimulus.get_stimulus_start_s()
duration = self.stimulus.get_stimulus_duration_s()
total_time = len(self.voltage_trace) / self.parameters["step_size"]
return [delay, start, duration, total_time]