add f zero freq curve error

This commit is contained in:
a.ott 2020-07-17 13:39:02 +02:00
parent b9f15827dd
commit 365c6ae825
2 changed files with 71 additions and 7 deletions

View File

@ -10,6 +10,8 @@ from warnings import warn
from scipy.optimize import minimize from scipy.optimize import minimize
import time import time
import matplotlib.pyplot as plt
class Fitter: class Fitter:
@ -21,9 +23,13 @@ class Fitter:
if "step_size" not in params: if "step_size" not in params:
self.base_model.set_variable("step_size", 0.00005) self.base_model.set_variable("step_size", 0.00005)
self.best_parameters_found = []
self.smallest_error = np.inf
# #
self.fi_contrasts = [] self.fi_contrasts = []
self.eod_freq = 0 self.eod_freq = 0
self.data_sampling_interval = -1
self.sc_max_lag = 2 self.sc_max_lag = 2
@ -42,6 +48,11 @@ class Fitter:
self.f_zero_slope_at_straight = 0 self.f_zero_slope_at_straight = 0
self.f_zero_straight_contrast = 0 self.f_zero_straight_contrast = 0
self.f_zero_fit = [] self.f_zero_fit = []
self.f_zero_curve_contrast = 0
self.f_zero_curve_contrast_idx = -1
self.f_zero_curve_freq = np.array([])
self.f_zero_curve_time = np.array([])
# self.tau_a = 0 # self.tau_a = 0
@ -50,6 +61,7 @@ class Fitter:
def set_data_reference_values(self, cell_data: CellData): def set_data_reference_values(self, cell_data: CellData):
self.eod_freq = cell_data.get_eod_frequency() self.eod_freq = cell_data.get_eod_frequency()
self.data_sampling_interval = cell_data.get_sampling_interval()
data_baseline = get_baseline_class(cell_data) data_baseline = get_baseline_class(cell_data)
data_baseline.load_values(cell_data.get_data_path()) data_baseline.load_values(cell_data.get_data_path())
@ -61,8 +73,9 @@ class Fitter:
fi_curve = get_fi_curve_class(cell_data, cell_data.get_fi_contrasts(), save_dir=cell_data.get_data_path()) fi_curve = get_fi_curve_class(cell_data, cell_data.get_fi_contrasts(), save_dir=cell_data.get_data_path())
self.f_inf_slope = fi_curve.get_f_inf_slope() self.f_inf_slope = fi_curve.get_f_inf_slope()
contrasts = np.array(cell_data.get_fi_contrasts())
if self.f_inf_slope < 0: if self.f_inf_slope < 0:
contrasts = np.array(cell_data.get_fi_contrasts()) * -1 contrasts = contrasts * -1
# print("old contrasts:", cell_data.get_fi_contrasts()) # print("old contrasts:", cell_data.get_fi_contrasts())
# print("new contrasts:", contrasts) # print("new contrasts:", contrasts)
contrasts = sorted(contrasts) contrasts = sorted(contrasts)
@ -72,13 +85,22 @@ class Fitter:
self.f_inf_values = fi_curve.f_inf_frequencies self.f_inf_values = fi_curve.f_inf_frequencies
self.f_inf_slope = fi_curve.get_f_inf_slope() self.f_inf_slope = fi_curve.get_f_inf_slope()
self.f_zero_values = fi_curve.f_zero_frequencies self.f_zero_values = fi_curve.f_zero_frequencies
self.f_zero_fit = fi_curve.f_zero_fit self.f_zero_fit = fi_curve.f_zero_fit
# self.f_zero_slopes = [fi_curve.get_f_zero_fit_slope_at_stimulus_value(c) for c in self.fi_contrasts] # self.f_zero_slopes = [fi_curve.get_f_zero_fit_slope_at_stimulus_value(c) for c in self.fi_contrasts]
self.f_zero_slope_at_straight = fi_curve.get_f_zero_fit_slope_at_straight() self.f_zero_slope_at_straight = fi_curve.get_f_zero_fit_slope_at_straight()
self.f_zero_straight_contrast = self.f_zero_fit[3] self.f_zero_straight_contrast = self.f_zero_fit[3]
max_contrast = max(contrasts)
test_contrast = 0.5 * max_contrast
diff_contrasts = np.abs(contrasts - test_contrast)
self.f_zero_curve_contrast_idx = np.argmin(diff_contrasts)
self.f_zero_curve_contrast = contrasts[self.f_zero_curve_contrast_idx]
times, freqs = fi_curve.get_mean_time_and_freq_traces()
self.f_zero_curve_freq = freqs[self.f_zero_curve_contrast_idx]
self.f_zero_curve_time = times[self.f_zero_curve_contrast_idx]
# around 1/3 of the value at straight # around 1/3 of the value at straight
# self.f_zero_slope = fi_curve.get_fi_curve_slope_at(fi_curve.get_f_zero_and_f_inf_intersection()) # self.f_zero_slope = fi_curve.get_fi_curve_slope_at(fi_curve.get_f_zero_and_f_inf_intersection())
@ -100,7 +122,7 @@ class Fitter:
# error_list = [error_bf, error_vs, error_sc, error_cv, # error_list = [error_bf, error_vs, error_sc, error_cv,
# error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope] # error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
error_weights = (0, 2, 2, 2, 1, 1, 1, 1, 0) error_weights = (0, 2, 2, 2, 1, 1, 1, 1, 0, 1)
fmin = minimize(fun=self.cost_function_all, fmin = minimize(fun=self.cost_function_all,
args=(error_weights,), x0=x0, method="Nelder-Mead", args=(error_weights,), x0=x0, method="Nelder-Mead",
options={"initial_simplex": initial_simplex, "xatol": 0.001, "maxfev": 600, "maxiter": 1200}) options={"initial_simplex": initial_simplex, "xatol": 0.001, "maxfev": 600, "maxiter": 1200})
@ -152,6 +174,11 @@ class Fitter:
return fmin, self.base_model.get_parameters() return fmin, self.base_model.get_parameters()
def cost_function_all(self, X, error_weights=None): def cost_function_all(self, X, error_weights=None):
for i in range(len(X)):
if X[i] < 0:
print("tried impossible value")
return 1000 + abs(X[i]) * 10000
self.base_model.set_variable("mem_tau", X[0]) self.base_model.set_variable("mem_tau", X[0])
self.base_model.set_variable("noise_strength", X[1]) self.base_model.set_variable("noise_strength", X[1])
self.base_model.set_variable("input_scaling", X[2]) self.base_model.set_variable("input_scaling", X[2])
@ -160,6 +187,11 @@ class Fitter:
self.base_model.set_variable("dend_tau", X[5]) self.base_model.set_variable("dend_tau", X[5])
self.base_model.set_variable("refractory_period", X[6]) self.base_model.set_variable("refractory_period", X[6])
# TODO add tests for parameters punish impossible values (immediate high error) but also add a slope towards valid points
base_stimulus = SinusoidalStepStimulus(self.eod_freq, 0) base_stimulus = SinusoidalStepStimulus(self.eod_freq, 0)
# find right v-offset # find right v-offset
test_model = self.base_model.get_model_copy() test_model = self.base_model.get_model_copy()
@ -172,7 +204,11 @@ class Fitter:
# [error_bf, error_vs, error_sc, error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope] # [error_bf, error_vs, error_sc, error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
error_list = self.calculate_errors(error_weights) error_list = self.calculate_errors(error_weights)
# print(sum(error_list)) print("sum: {:.2f}, ".format(sum(error_list)))
if sum(error_list) < self.smallest_error:
self.smallest_error = sum(error_list)
self.best_parameters_found = X
return sum(error_list) return sum(error_list)
def cost_function_without_ref_period(self, X, error_weights=None): def cost_function_without_ref_period(self, X, error_weights=None):
@ -325,7 +361,7 @@ class Fitter:
error_bf = abs((baseline_freq - self.baseline_freq) / self.baseline_freq) error_bf = abs((baseline_freq - self.baseline_freq) / self.baseline_freq)
error_vs = abs((vector_strength - self.vector_strength) / 0.1) error_vs = abs((vector_strength - self.vector_strength) / 0.1)
error_cv = abs((coefficient_of_variation - self.coefficient_of_variation) / 0.1) error_cv = abs((coefficient_of_variation - self.coefficient_of_variation) / 0.1)
error_bursty = (abs(burstiness - self.burstiness) / 0.02) error_bursty = (abs(burstiness - self.burstiness) / 0.2)
error_sc = 0 error_sc = 0
for i in range(self.sc_max_lag): for i in range(self.sc_max_lag):
@ -333,6 +369,8 @@ class Fitter:
# error_sc = error_sc / self.sc_max_lag # error_sc = error_sc / self.sc_max_lag
error_f_inf_slope = abs((f_infinities_slope - self.f_inf_slope) / abs(self.f_inf_slope+1/20)) error_f_inf_slope = abs((f_infinities_slope - self.f_inf_slope) / abs(self.f_inf_slope+1/20))
error_f_inf = calculate_list_error(f_infinities, self.f_inf_values) error_f_inf = calculate_list_error(f_infinities, self.f_inf_values)
@ -341,8 +379,33 @@ class Fitter:
/ abs(self.f_zero_slope_at_straight+1 / 10) / abs(self.f_zero_slope_at_straight+1 / 10)
error_f_zero = calculate_list_error(f_zeros, self.f_zero_values) error_f_zero = calculate_list_error(f_zeros, self.f_zero_values)
# TODO
if model.get_sampling_interval() != self.data_sampling_interval:
raise ValueError("Sampling intervals not the same!")
times, freqs = fi_curve_model.get_mean_time_and_freq_traces()
freq_prediction = np.array(freqs[self.f_zero_curve_contrast_idx])
time_prediction = np.array(times[self.f_zero_curve_contrast_idx])
stimulus_start = fi_curve_model.get_stimulus_start() - time_prediction[0]
length = fi_curve_model.get_stimulus_duration() / 2
start_idx = int(stimulus_start / fi_curve_model.get_sampling_interval())
end_idx = int((stimulus_start + length) / model.get_sampling_interval())
if len(time_prediction) == 0 or len(time_prediction) < end_idx or time_prediction[0] > fi_curve_model.get_stimulus_start():
error_f0_curve = 200
else:
error_f0_curve = np.mean((self.f_zero_curve_freq[start_idx:end_idx] - freq_prediction[start_idx:end_idx])**2) / 100
# plt.plot(self.f_zero_curve_freq[start_idx:end_idx])
# plt.plot(freq_prediction[start_idx:end_idx])
# plt.plot((self.f_zero_curve_freq[start_idx:end_idx] - freq_prediction[start_idx:end_idx])**2)
# plt.show()
# plt.close()
error_list = [error_bf, error_vs, error_sc, error_cv, error_bursty, error_list = [error_bf, error_vs, error_sc, error_cv, error_bursty,
error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope_at_straight] error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope_at_straight, error_f0_curve]
if error_weights is not None and len(error_weights) == len(error_list): if error_weights is not None and len(error_weights) == len(error_list):
for i in range(len(error_weights)): for i in range(len(error_weights)):
@ -368,6 +431,8 @@ def calculate_list_error(fit, reference):
return norm_error return norm_error
def calculate_f0_curve_error(data_ficurve, model_ficurve):
return 0
def normed_quadratic_freq_error(fit, ref, factor=2): def normed_quadratic_freq_error(fit, ref, factor=2):
return (abs(fit-ref)/factor)**2 / ref return (abs(fit-ref)/factor)**2 / ref

View File

@ -481,7 +481,6 @@ def detect_f_zero_in_frequency_trace(time, frequency, stimulus_start, sampling_i
if start_idx < 0: if start_idx < 0:
raise ValueError("Time window to detect f_zero starts in an negative index!") raise ValueError("Time window to detect f_zero starts in an negative index!")
min_during_start_of_stim = min(frequency[start_idx:end_idx]) min_during_start_of_stim = min(frequency[start_idx:end_idx])
max_during_start_of_stim = max(frequency[start_idx:end_idx]) max_during_start_of_stim = max(frequency[start_idx:end_idx])