adapt for ModelFit
This commit is contained in:
parent
6992698323
commit
2e6a4af7fd
@ -7,25 +7,21 @@ import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import helperFunctions as hF
|
||||
from CellData import CellData
|
||||
|
||||
from ModelFit import ModelFit, get_best_fit
|
||||
import os
|
||||
|
||||
def main():
|
||||
# 2012-07-12-ag-invivo-1 fit and eod frequency:
|
||||
# parameters = {'refractory_period': 0.00080122694889117, 'v_base': 0, 'v_zero': 0, 'a_zero': 20, 'step_size': 5e-05,
|
||||
# 'delta_a': 0.23628384937392385, 'threshold': 1, 'input_scaling': 100.66894113671654,
|
||||
# 'mem_tau': 0.012388673630113763, 'tau_a': 0.09106579031822526, 'v_offset': -6.25,
|
||||
# 'noise_strength': 0.0404417932620334, 'dend_tau': 0.00122153436141022}
|
||||
# cell_data = CellData("./data/2012-07-12-ag-invivo-1/")
|
||||
|
||||
parameters = {'delta_a': 0.08820130374685671, 'refractory_period': 0.0006, 'a_zero': 15, 'step_size': 5e-05,
|
||||
'v_base': 0, 'noise_strength': 0.03622523883042496, 'v_zero': 0, 'threshold': 1,
|
||||
'input_scaling': 77.75367190909581, 'tau_a': 0.07623731247799118, 'v_offset': -10.546875,
|
||||
'mem_tau': 0.008741976196676469, 'dend_tau': 0.0012058986118892773}
|
||||
sam_analysis("results/invivo_results/2013-01-08-ad-invivo-1/")
|
||||
quit()
|
||||
modelfit = get_best_fit("results/invivo_results/2013-01-08-ad-invivo-1/")
|
||||
|
||||
cell_data = CellData("./data/2012-12-13-an-invivo-1/")
|
||||
if not os.path.exists(os.path.join(modelfit.get_cell_path(), "samallspikes1.dat")):
|
||||
print("Cell: {} \n Has no measured sam stimuli.")
|
||||
return
|
||||
cell_data = CellData(modelfit.get_cell_path())
|
||||
|
||||
eod_freq = cell_data.get_eod_frequency()
|
||||
model = LifacNoiseModel(parameters)
|
||||
model = modelfit.get_model()
|
||||
|
||||
# base_cell = get_baseline_class(cell_data)
|
||||
# base_model = get_baseline_class(model, cell_data.get_eod_frequency())
|
||||
@ -45,6 +41,7 @@ def main():
|
||||
u_durations = np.unique(durations)
|
||||
mean_duration = np.mean(durations)
|
||||
contrasts = cell_data.get_sam_contrasts()
|
||||
u_contrasts = np.unique(contrasts)
|
||||
contrast = contrasts[0] # are all the same in this test case
|
||||
spiketimes = cell_data.get_sam_spiketimes()
|
||||
delta_freqs = cell_data.get_sam_delta_frequencies()
|
||||
@ -66,6 +63,7 @@ def main():
|
||||
# plt.plot(prob_density_function_model)
|
||||
# plt.show()
|
||||
# plt.close()
|
||||
|
||||
fig, axes = plt.subplots(1, 4)
|
||||
cuts = cut_pdf_into_periods(prob_density_function_model, 1/float(m_freq), step_size)
|
||||
for c in cuts:
|
||||
@ -78,12 +76,15 @@ def main():
|
||||
for spikes_cell in spikes_dictionary[m_freq]:
|
||||
prob_density_cell = spiketimes_calculate_pdf(spikes_cell[0], step_size)
|
||||
|
||||
if len(prob_density_cell) < 3 * (eod_freq / step_size):
|
||||
continue
|
||||
cuts_cell = cut_pdf_into_periods(prob_density_cell, 1/float(m_freq), step_size)
|
||||
for c in cuts_cell:
|
||||
axes[1].plot(c, color="gray", alpha=0.15)
|
||||
print(cuts_cell.shape)
|
||||
means_cell.append(np.mean(cuts_cell, axis=0))
|
||||
|
||||
if len(means_cell) == 0:
|
||||
continue
|
||||
means_cell = np.array(means_cell)
|
||||
total_mean_cell = np.mean(means_cell, axis=0)
|
||||
axes[1].set_title("cell")
|
||||
@ -100,6 +101,108 @@ def main():
|
||||
plt.close()
|
||||
|
||||
|
||||
def sam_analysis(fit_path):
|
||||
modelfit = get_best_fit(fit_path)
|
||||
|
||||
if not os.path.exists(os.path.join(modelfit.get_cell_path(), "samallspikes1.dat")):
|
||||
print("Cell: {} \n Has no measured sam stimuli.")
|
||||
return
|
||||
cell_data = CellData(modelfit.get_cell_path())
|
||||
model = modelfit.get_model()
|
||||
|
||||
# parameters = {'delta_a': 0.08820130374685671, 'refractory_period': 0.0006, 'a_zero': 15, 'step_size': 5e-05,
|
||||
# 'v_base': 0, 'noise_strength': 0.03622523883042496, 'v_zero': 0, 'threshold': 1,
|
||||
# 'input_scaling': 77.75367190909581, 'tau_a': 0.07623731247799118, 'v_offset': -10.546875,
|
||||
# 'mem_tau': 0.008741976196676469, 'dend_tau': 0.0012058986118892773}
|
||||
# model = LifacNoiseModel(parameters)
|
||||
# cell_data = CellData("./data/test_data/2012-12-13-an-invivo-1/")
|
||||
|
||||
eod_freq = cell_data.get_eod_frequency()
|
||||
step_size = cell_data.get_sampling_interval()
|
||||
|
||||
durations = cell_data.get_sam_durations()
|
||||
u_durations = np.unique(durations)
|
||||
contrasts = cell_data.get_sam_contrasts()
|
||||
u_contrasts = np.unique(contrasts)
|
||||
spiketimes = cell_data.get_sam_spiketimes()
|
||||
delta_freqs = cell_data.get_sam_delta_frequencies()
|
||||
u_delta_freqs = np.unique(delta_freqs)
|
||||
|
||||
all_data = []
|
||||
for mod_freq in sorted(u_delta_freqs):
|
||||
# TODO problem of cutting the pdf as in some cases the pdf is shorter than 1 modulation frequency period!
|
||||
|
||||
if 1/mod_freq > durations[0] / 4:
|
||||
print("skipped mod_freq: {}".format(mod_freq))
|
||||
print("Duration: {} while mod_freq period: {:.2f}".format(durations[0], 1/mod_freq))
|
||||
print("Maybe long enough duration? unique durations:", u_durations)
|
||||
continue
|
||||
mfreq_data = {}
|
||||
cell_means = []
|
||||
model_means = []
|
||||
for c in u_contrasts:
|
||||
mfreq_data[c] = []
|
||||
|
||||
for i in range(len(delta_freqs)):
|
||||
if delta_freqs[i] != mod_freq:
|
||||
continue
|
||||
|
||||
if len(spiketimes[i]) > 1:
|
||||
print("There are more spiketimes in one 'point'! Only the first was used! ")
|
||||
spikes = spiketimes[i][0]
|
||||
|
||||
|
||||
cell_pdf = spiketimes_calculate_pdf(spikes, step_size)
|
||||
|
||||
cell_cuts = cut_pdf_into_periods(cell_pdf, 1/mod_freq, step_size, factor=1.1, use_all=True)
|
||||
cell_mean = np.mean(cell_cuts, axis=0)
|
||||
cell_means.append(cell_mean)
|
||||
# fig, axes = plt.subplots(1, 2)
|
||||
# for c in cell_cuts:
|
||||
# axes[0].plot(c, color="grey", alpha=0.2)
|
||||
# axes[0].plot(np.mean(cell_means, axis=0), color="black")
|
||||
|
||||
stimulus = SAM(eod_freq, contrasts[i] / 100, mod_freq)
|
||||
v1, spikes_model = model.simulate_fast(stimulus, durations[i] * 4)
|
||||
model_pdf = spiketimes_calculate_pdf(spikes_model, step_size)
|
||||
model_cuts = cut_pdf_into_periods(model_pdf, 1/mod_freq, step_size, factor=1.1)
|
||||
model_mean = np.mean(model_cuts, axis=0)
|
||||
model_means.append(model_mean)
|
||||
|
||||
# for c in model_cuts:
|
||||
# axes[1].plot(c, color="grey", alpha=0.2)
|
||||
# axes[1].plot(np.mean(model_cuts, axis=0), color="black")
|
||||
# plt.title("mod_freq: {}".format(mod_freq))
|
||||
# plt.show()
|
||||
# plt.close()
|
||||
|
||||
|
||||
fig, axes = plt.subplots(1, 4)
|
||||
for c in cell_means:
|
||||
axes[0].plot(c, color="grey", alpha=0.2)
|
||||
axes[0].plot(np.mean(cell_means, axis=0), color="black")
|
||||
axis_cell = axes[0].axis()
|
||||
|
||||
for m in model_means:
|
||||
axes[1].plot(m, color="grey", alpha=0.2)
|
||||
axes[1].plot(np.mean(model_means, axis=0), color="black")
|
||||
axis_model = axes[1].axis()
|
||||
ylim_top = max(axis_cell[3], axis_model[3])
|
||||
axes[1].set_ylim(0, ylim_top)
|
||||
axes[0].set_ylim(0, ylim_top)
|
||||
|
||||
axes[2].plot((np.mean(model_means, axis=0) - np.mean(cell_means, axis=0)) / np.mean(model_means, axis=0))
|
||||
|
||||
plt.title("modulation frequency: {}".format(mod_freq))
|
||||
plt.show()
|
||||
plt.close()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def generate_pdf(model, stimulus, trials=4, sim_length=3, kernel_width=0.005):
|
||||
|
||||
trials_rate_list = []
|
||||
@ -135,27 +238,28 @@ def spiketimes_calculate_pdf(spikes, step_size, kernel_width=0.005):
|
||||
return rate
|
||||
|
||||
|
||||
def cut_pdf_into_periods(pdf, period, step_size, factor=1.5):
|
||||
def cut_pdf_into_periods(pdf, period, step_size, factor=1.5, use_all=False):
|
||||
|
||||
if period / step_size > len(pdf):
|
||||
return [pdf]
|
||||
|
||||
idx_period_length = int(period/float(step_size))
|
||||
offset_per_step = period/float(step_size) - idx_period_length
|
||||
cut_length = int(period / float(step_size) * factor)
|
||||
cuts = []
|
||||
|
||||
num_of_cuts = int(len(pdf) / idx_period_length)
|
||||
num_of_cuts = int(len(pdf) / (idx_period_length+offset_per_step))
|
||||
|
||||
if len(pdf) - (num_of_cuts * idx_period_length + (num_of_cuts * offset_per_step)) < cut_length - idx_period_length:
|
||||
num_of_cuts -= 1
|
||||
|
||||
if num_of_cuts <= 0:
|
||||
if num_of_cuts <= 1:
|
||||
raise RuntimeError("Probability density function to short to cut.")
|
||||
|
||||
for i in np.arange(0, num_of_cuts, 1):
|
||||
cuts = np.zeros((num_of_cuts-1, cut_length))
|
||||
for i in np.arange(1, num_of_cuts, 1):
|
||||
offset_correction = int(offset_per_step * i)
|
||||
start_idx = i*idx_period_length + offset_correction
|
||||
end_idx = (i*idx_period_length)+cut_length + offset_correction
|
||||
cuts.append(np.array(pdf[start_idx: end_idx]))
|
||||
|
||||
cuts = np.array(cuts)
|
||||
cut = np.array(pdf[start_idx: end_idx])
|
||||
cuts[i-1] = cut
|
||||
|
||||
if len(cuts.shape) < 2:
|
||||
print("Fishy....")
|
||||
|
Loading…
Reference in New Issue
Block a user