add new getters and plot_mean_freq curves
This commit is contained in:
parent
d086f4b3a1
commit
256931845e
227
FiCurve.py
227
FiCurve.py
@ -87,6 +87,47 @@ class FICurve:
|
|||||||
fit_vars = self.f_zero_fit
|
fit_vars = self.f_zero_fit
|
||||||
return fu.derivative_full_boltzmann(x, fit_vars[0], fit_vars[1], fit_vars[2], fit_vars[3])
|
return fu.derivative_full_boltzmann(x, fit_vars[0], fit_vars[1], fit_vars[2], fit_vars[3])
|
||||||
|
|
||||||
|
def get_mean_time_and_freq_traces(self):
|
||||||
|
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
|
||||||
|
|
||||||
|
def get_time_and_freq_traces(self):
|
||||||
|
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
|
||||||
|
|
||||||
|
def get_sampling_interval(self):
|
||||||
|
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
|
||||||
|
|
||||||
|
def get_delay(self):
|
||||||
|
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
|
||||||
|
|
||||||
|
def get_stimulus_start(self):
|
||||||
|
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
|
||||||
|
|
||||||
|
def get_stimulus_end(self):
|
||||||
|
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
|
||||||
|
|
||||||
|
def get_stimulus_duration(self):
|
||||||
|
return self.get_stimulus_end() - self.get_stimulus_start()
|
||||||
|
|
||||||
|
def plot_mean_frequency_curves(self, save_path=None):
|
||||||
|
time_traces, freq_traces = self.get_time_and_freq_traces()
|
||||||
|
mean_times, mean_freqs = self.get_mean_time_and_freq_traces()
|
||||||
|
for i, sv in enumerate(self.stimulus_values):
|
||||||
|
|
||||||
|
for j in range(len(time_traces[i])):
|
||||||
|
plt.plot(time_traces[i][j], freq_traces[i][j], color="gray", alpha=0.8)
|
||||||
|
|
||||||
|
plt.plot(mean_times[i], mean_freqs[i], color="black")
|
||||||
|
plt.xlabel("Time [s]")
|
||||||
|
plt.ylabel("Frequency [Hz]")
|
||||||
|
|
||||||
|
|
||||||
|
plt.title("Mean frequency at contrast {:.2f} ({:} trials)".format(sv, len(time_traces[i])))
|
||||||
|
if save_path is None:
|
||||||
|
plt.show()
|
||||||
|
else:
|
||||||
|
plt.savefig(save_path + "mean_frequency_contrast_{:.2f}.png".format(sv))
|
||||||
|
plt.close()
|
||||||
|
|
||||||
def plot_fi_curve(self, save_path=None):
|
def plot_fi_curve(self, save_path=None):
|
||||||
min_x = min(self.stimulus_values)
|
min_x = min(self.stimulus_values)
|
||||||
max_x = max(self.stimulus_values)
|
max_x = max(self.stimulus_values)
|
||||||
@ -111,7 +152,6 @@ class FICurve:
|
|||||||
if save_path is None:
|
if save_path is None:
|
||||||
plt.show()
|
plt.show()
|
||||||
else:
|
else:
|
||||||
print("save")
|
|
||||||
plt.savefig(save_path + "fi_curve.png")
|
plt.savefig(save_path + "fi_curve.png")
|
||||||
plt.close()
|
plt.close()
|
||||||
|
|
||||||
@ -173,7 +213,6 @@ class FICurve:
|
|||||||
if save_path is None:
|
if save_path is None:
|
||||||
plt.show()
|
plt.show()
|
||||||
else:
|
else:
|
||||||
print("save")
|
|
||||||
plt.savefig(save_path + "fi_curve_comparision.png")
|
plt.savefig(save_path + "fi_curve_comparision.png")
|
||||||
plt.close()
|
plt.close()
|
||||||
|
|
||||||
@ -188,8 +227,8 @@ class FICurveCellData(FICurve):
|
|||||||
super().__init__(stimulus_values)
|
super().__init__(stimulus_values)
|
||||||
|
|
||||||
def calculate_all_frequency_points(self):
|
def calculate_all_frequency_points(self):
|
||||||
mean_frequencies = self.cell_data.get_mean_isi_frequencies()
|
mean_frequencies = self.cell_data.get_mean_fi_curve_isi_frequencies()
|
||||||
time_axes = self.cell_data.get_time_axes_mean_frequencies()
|
time_axes = self.cell_data.get_time_axes_fi_curve_mean_frequencies()
|
||||||
stimulus_start = self.cell_data.get_stimulus_start()
|
stimulus_start = self.cell_data.get_stimulus_start()
|
||||||
stimulus_duration = self.cell_data.get_stimulus_duration()
|
stimulus_duration = self.cell_data.get_stimulus_duration()
|
||||||
sampling_interval = self.cell_data.get_sampling_interval()
|
sampling_interval = self.cell_data.get_sampling_interval()
|
||||||
@ -217,6 +256,39 @@ class FICurveCellData(FICurve):
|
|||||||
stimulus_start, stimulus_duration, sampling_interval)
|
stimulus_start, stimulus_duration, sampling_interval)
|
||||||
self.f_inf_frequencies.append(f_infinity)
|
self.f_inf_frequencies.append(f_infinity)
|
||||||
|
|
||||||
|
def get_mean_time_and_freq_traces(self):
|
||||||
|
return self.cell_data.get_time_axes_fi_curve_mean_frequencies(), self.cell_data.get_mean_fi_curve_isi_frequencies()
|
||||||
|
|
||||||
|
def get_time_and_freq_traces(self):
|
||||||
|
spiketimes = self.cell_data.get_fi_spiketimes()
|
||||||
|
time_traces = []
|
||||||
|
freq_traces = []
|
||||||
|
for i in range(len(spiketimes)):
|
||||||
|
trial_time_traces = []
|
||||||
|
trial_freq_traces = []
|
||||||
|
for j in range(len(spiketimes[i])):
|
||||||
|
time, isi_freq = hF.calculate_time_and_frequency_trace(spiketimes[i][j], self.cell_data.get_sampling_interval())
|
||||||
|
|
||||||
|
trial_freq_traces.append(isi_freq)
|
||||||
|
trial_time_traces.append(time)
|
||||||
|
|
||||||
|
time_traces.append(trial_time_traces)
|
||||||
|
freq_traces.append(trial_freq_traces)
|
||||||
|
|
||||||
|
return time_traces, freq_traces
|
||||||
|
|
||||||
|
def get_sampling_interval(self):
|
||||||
|
return self.cell_data.get_sampling_interval()
|
||||||
|
|
||||||
|
def get_delay(self):
|
||||||
|
return self.cell_data.get_delay()
|
||||||
|
|
||||||
|
def get_stimulus_start(self):
|
||||||
|
return self.cell_data.get_stimulus_start()
|
||||||
|
|
||||||
|
def get_stimulus_end(self):
|
||||||
|
return self.cell_data.get_stimulus_end()
|
||||||
|
|
||||||
def get_f_zero_inverse_at_frequency(self, frequency):
|
def get_f_zero_inverse_at_frequency(self, frequency):
|
||||||
# UNUSED
|
# UNUSED
|
||||||
b_vars = self.f_zero_fit
|
b_vars = self.f_zero_fit
|
||||||
@ -227,95 +299,41 @@ class FICurveCellData(FICurve):
|
|||||||
infty_vars = self.f_inf_fit
|
infty_vars = self.f_inf_fit
|
||||||
return fu.clipped_line(stimulus_value, infty_vars[0], infty_vars[1])
|
return fu.clipped_line(stimulus_value, infty_vars[0], infty_vars[1])
|
||||||
|
|
||||||
# def get_fi_curve_slope_at(self, stimulus_value):
|
|
||||||
# fit_vars = self.f_zero_fit
|
|
||||||
# return fu.derivative_full_boltzmann(stimulus_value, fit_vars[0], fit_vars[1], fit_vars[2], fit_vars[3])
|
|
||||||
#
|
|
||||||
# def get_fi_curve_slope_of_straight(self):
|
|
||||||
# fit_vars = self.f_zero_fit
|
|
||||||
# return fu.full_boltzmann_straight_slope(fit_vars[0], fit_vars[1], fit_vars[2], fit_vars[3])
|
|
||||||
|
|
||||||
# def get_f_zero_and_f_inf_intersection(self):
|
|
||||||
# x_values = np.arange(min(self.stimulus_values), max(self.stimulus_values), 0.0001)
|
|
||||||
# fit_vars = self.f_zero_fit
|
|
||||||
# f_zero = fu.full_boltzmann(x_values, fit_vars[0], fit_vars[1], fit_vars[2], fit_vars[3])
|
|
||||||
# f_inf = fu.clipped_line(x_values, self.f_inf_fit[0], self.f_inf_fit[1])
|
|
||||||
#
|
|
||||||
# intersection_indicies = np.argwhere(np.diff(np.sign(f_zero - f_inf))).flatten()
|
|
||||||
# # print("fi-curve calc intersection:", intersection_indicies, x_values[intersection_indicies])
|
|
||||||
# if len(intersection_indicies) > 1:
|
|
||||||
# f_baseline = np.median(self.f_baseline_frequencies)
|
|
||||||
# best_dist = np.inf
|
|
||||||
# best_idx = -1
|
|
||||||
# for idx in intersection_indicies:
|
|
||||||
# dist = abs(fu.clipped_line(x_values[idx], self.f_inf_fit[0], self.f_inf_fit[1]) - f_baseline)
|
|
||||||
# if dist < best_dist:
|
|
||||||
# best_dist = dist
|
|
||||||
# best_idx = idx
|
|
||||||
#
|
|
||||||
# return x_values[best_idx]
|
|
||||||
#
|
|
||||||
# elif len(intersection_indicies) == 0:
|
|
||||||
# raise ValueError("No intersection found!")
|
|
||||||
# else:
|
|
||||||
# return x_values[intersection_indicies[0]]
|
|
||||||
|
|
||||||
# def get_fi_curve_slope_at_f_zero_intersection(self):
|
|
||||||
# x = self.get_f_zero_and_f_inf_intersection()
|
|
||||||
# fit_vars = self.f_zero_fit
|
|
||||||
# return fu.derivative_full_boltzmann(x, fit_vars[0], fit_vars[1], fit_vars[2], fit_vars[3])
|
|
||||||
|
|
||||||
# def plot_fi_curve(self, savepath: str = None, comp_f_baselines=None, comp_f_zeros=None, comp_f_infs=None):
|
|
||||||
# min_x = min(self.stimulus_values)
|
|
||||||
# max_x = max(self.stimulus_values)
|
|
||||||
# step = (max_x - min_x) / 5000
|
|
||||||
# x_values = np.arange(min_x, max_x, step)
|
|
||||||
#
|
|
||||||
# plt.plot(self.stimulus_values, self.f_baseline_frequencies, color='blue', label='f_base')
|
|
||||||
# if comp_f_baselines is not None:
|
|
||||||
# plt.plot(self.stimulus_values, comp_f_baselines, 'o', color='skyblue', label='comp_values base')
|
|
||||||
#
|
|
||||||
# plt.plot(self.stimulus_values, self.f_inf_frequencies, 'o', color='green', label='f_inf')
|
|
||||||
# plt.plot(x_values, [fu.clipped_line(x, self.f_inf_fit[0], self.f_inf_fit[1]) for x in x_values],
|
|
||||||
# color='darkgreen', label='f_inf_fit')
|
|
||||||
# if comp_f_infs is not None:
|
|
||||||
# plt.plot(self.stimulus_values, comp_f_infs, 'o', color='lime', label='comp values f_inf')
|
|
||||||
#
|
|
||||||
# plt.plot(self.stimulus_values, self.f_zero_frequencies, 'o', color='orange', label='f_zero')
|
|
||||||
# popt = self.f_zero_fit
|
|
||||||
# plt.plot(x_values, [fu.full_boltzmann(x, popt[0], popt[1], popt[2], popt[3]) for x in x_values],
|
|
||||||
# color='red', label='f_0_fit')
|
|
||||||
# if comp_f_zeros is not None:
|
|
||||||
# plt.plot(self.stimulus_values, comp_f_zeros, 'o', color='wheat', label='comp_values f_zero')
|
|
||||||
#
|
|
||||||
# plt.legend()
|
|
||||||
# plt.ylabel("Frequency [Hz]")
|
|
||||||
# plt.xlabel("Stimulus value")
|
|
||||||
#
|
|
||||||
# if savepath is None:
|
|
||||||
# plt.show()
|
|
||||||
# else:
|
|
||||||
# print("save")
|
|
||||||
# plt.savefig(savepath + "fi_curve.png")
|
|
||||||
# plt.close()
|
|
||||||
|
|
||||||
def plot_f_point_detections(self, save_path=None):
|
def plot_f_point_detections(self, save_path=None):
|
||||||
mean_frequencies = np.array(self.cell_data.get_mean_isi_frequencies())
|
mean_frequencies = np.array(self.cell_data.get_mean_fi_curve_isi_frequencies())
|
||||||
time_axes = self.cell_data.get_time_axes_mean_frequencies()
|
time_axes = self.cell_data.get_time_axes_fi_curve_mean_frequencies()
|
||||||
|
sampling_interval = self.cell_data.get_sampling_interval()
|
||||||
|
stim_start = self.cell_data.get_stimulus_start()
|
||||||
|
stim_duration = self.cell_data.get_stimulus_duration()
|
||||||
|
|
||||||
for i in range(len(mean_frequencies)):
|
for i, c in enumerate(self.stimulus_values):
|
||||||
fig, axes = plt.subplots(1, 1, sharex="all")
|
time = time_axes[i]
|
||||||
axes.plot(time_axes[i], mean_frequencies[i], label="voltage")
|
frequency = mean_frequencies[i]
|
||||||
axes.plot((time_axes[i][0], time_axes[i][-1]), (self.f_zero_frequencies[i], self.f_zero_frequencies[i]), label="f_zero")
|
|
||||||
axes.plot((time_axes[i][0], time_axes[i][-1]), (self.f_inf_frequencies[i], self.f_inf_frequencies[i]), '--', label="f_inf")
|
|
||||||
axes.plot((time_axes[i][0], time_axes[i][-1]), (self.f_baseline_frequencies[i], self.f_baseline_frequencies[i]), label="f_base")
|
|
||||||
axes.set_title(str(self.stimulus_values[i]))
|
|
||||||
plt.legend()
|
|
||||||
|
|
||||||
if save_path is None:
|
if len(time) == 0 or min(time) > stim_start \
|
||||||
plt.show()
|
or max(time) < stim_start + stim_duration:
|
||||||
|
continue
|
||||||
|
fig, ax = plt.subplots(1, 1, figsize=(8, 8))
|
||||||
|
ax.plot(time, frequency)
|
||||||
|
start_idx, end_idx = hF.time_window_detect_f_baseline(time[0], stim_start, sampling_interval)
|
||||||
|
ax.plot((time[start_idx], time[end_idx]), (self.f_baseline_frequencies[i], self.f_baseline_frequencies[i]),
|
||||||
|
label="f_base", color="deepskyblue")
|
||||||
|
|
||||||
|
start_idx, end_idx = hF.time_window_detect_f_infinity(time[0], stim_start, stim_duration,
|
||||||
|
sampling_interval)
|
||||||
|
ax.plot((time[start_idx], time[end_idx]), (self.f_inf_frequencies[i], self.f_inf_frequencies[i]),
|
||||||
|
label="f_inf", color="limegreen")
|
||||||
|
|
||||||
|
start_idx, end_idx = hF.time_window_detect_f_zero(time[0], stim_start, sampling_interval)
|
||||||
|
ax.plot((time[start_idx], time[end_idx]), (self.f_zero_frequencies[i], self.f_zero_frequencies[i]),
|
||||||
|
label="f_zero", color="orange")
|
||||||
|
|
||||||
|
plt.legend()
|
||||||
|
if save_path is not None:
|
||||||
|
plt.savefig(save_path + "/detections_contrast_{:.2f}.png".format(c))
|
||||||
else:
|
else:
|
||||||
plt.savefig(save_path + "GENERATE_NAMES.png")
|
plt.show()
|
||||||
|
|
||||||
plt.close()
|
plt.close()
|
||||||
|
|
||||||
|
|
||||||
@ -374,6 +392,37 @@ class FICurveModel(FICurve):
|
|||||||
f_baseline = hF.detect_f_baseline_in_freq_trace(time, frequency, self.stim_start, sampling_interval)
|
f_baseline = hF.detect_f_baseline_in_freq_trace(time, frequency, self.stim_start, sampling_interval)
|
||||||
self.f_baseline_frequencies.append(f_baseline)
|
self.f_baseline_frequencies.append(f_baseline)
|
||||||
|
|
||||||
|
def get_mean_time_and_freq_traces(self):
|
||||||
|
return self.mean_time_traces, self.mean_frequency_traces
|
||||||
|
|
||||||
|
def get_sampling_interval(self):
|
||||||
|
return self.model.get_sampling_interval()
|
||||||
|
|
||||||
|
def get_delay(self):
|
||||||
|
return 0
|
||||||
|
|
||||||
|
def get_stimulus_start(self):
|
||||||
|
return self.stim_start
|
||||||
|
|
||||||
|
def get_stimulus_end(self):
|
||||||
|
return self.stim_start + self.stim_duration
|
||||||
|
|
||||||
|
def get_time_and_freq_traces(self):
|
||||||
|
time_traces = []
|
||||||
|
freq_traces = []
|
||||||
|
for v in range(len(self.stimulus_values)):
|
||||||
|
times_for_value = []
|
||||||
|
freqs_for_value = []
|
||||||
|
|
||||||
|
for s in self.spiketimes_array[v]:
|
||||||
|
t, f = hF.calculate_time_and_frequency_trace(s, self.model.get_sampling_interval())
|
||||||
|
times_for_value.append(t)
|
||||||
|
freqs_for_value.append(f)
|
||||||
|
|
||||||
|
time_traces.append(times_for_value)
|
||||||
|
freq_traces.append(freqs_for_value)
|
||||||
|
return time_traces, freq_traces
|
||||||
|
|
||||||
def plot_f_point_detections(self, save_path=None):
|
def plot_f_point_detections(self, save_path=None):
|
||||||
sampling_interval = self.model.get_sampling_interval()
|
sampling_interval = self.model.get_sampling_interval()
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user