add noise to the dendrite not the outputcd PycharmProjects/neuronModel/

This commit is contained in:
alexanderott 2021-02-03 12:38:53 +01:00
parent b51cdbfaaf
commit 24bed729c3
3 changed files with 72 additions and 27 deletions

View File

@ -300,10 +300,10 @@ def simulate_fast(rectified_stimulus_array, total_time_s, parameters: np.ndarray
noise = noise_strength * noise_value / np.sqrt(step_size)
input_voltage[i] = input_voltage[i - 1] + (
(-input_voltage[i - 1] + rectified_stimulus_array[i]) / dend_tau) * step_size
(-input_voltage[i - 1] + rectified_stimulus_array[i] + noise) / dend_tau) * step_size
output_voltage[i] = output_voltage[i - 1] + ((v_base - output_voltage[i - 1] + v_offset + (
input_voltage[i] * input_scaling) - adaption[i - 1] + noise) / mem_tau) * step_size
input_voltage[i] * input_scaling) - adaption[i - 1]) / mem_tau) * step_size
adaption[i] = adaption[i - 1] + ((-adaption[i - 1]) / tau_a) * step_size

View File

@ -31,6 +31,8 @@ def run_sam_analysis_for_all_cells(folder):
count = 0
for item in sorted(os.listdir(folder)):
cell_folder = os.path.join(folder, item)
if not os.path.isdir(cell_folder):
continue
# fit = get_best_fit(cell_folder, use_comparable_error=False)
# cell_data = fit.get_cell_data()
#
@ -42,7 +44,6 @@ def run_sam_analysis_for_all_cells(folder):
print(count)
def test_model_response(model: LifacNoiseModel, eod_freq, contrast, modulation_frequencies):
stds = []

92
test.py
View File

@ -1,37 +1,81 @@
import os
from parser.CellData import CellData
import numpy as np
from fitting.ModelFit import ModelFit, get_best_fit
# from plottools.axes import labelaxes_params
import matplotlib.pyplot as plt
colors = ["black", "red", "blue", "orange", "green"]
data_folder = "./data/final/"
for cell in sorted(os.listdir(data_folder)):
print(cell)
cell_folder = os.path.join(data_folder, cell)
if not os.path.exists(os.path.join(cell_folder, "samspikes1.dat")):
continue
cell_data = CellData(cell_folder)
sam_spikes = cell_data.get_sam_spiketimes()
delta_freqs = cell_data.get_sam_delta_frequencies()
# [time_traces, v1_traces, eod_traces, local_eod_traces, stimulus_traces]
[time_traces, v1_traces, eod_traces, local_eod_traces, stimulus_traces] = cell_data.get_sam_traces()
print(len(time_traces))
# for i in range(len(delta_freqs)):
#
# fig, axes = plt.subplots(2, 1, sharex="all")
#
# axes[0].plot(time_traces[i], local_eod_traces[i])
# axes[0].set_title("Local EOD - dF {}".format(delta_freqs[i]))
# axes[1].plot(time_traces[i], v1_traces[i])
# axes[1].set_title("v1 trace")
# axes[1].eventplot(sam_spikes[i], lineoffsets=max(v1_traces[i]))
# plt.show()
# plt.close()
# break
def main():
# sam_tests()
fit = get_best_fit("results/final_sam2/2012-12-20-ae-invivo-1/")
fit.generate_master_plot()
def sam_tests():
data_folder = "./data/final/"
for cell in sorted(os.listdir(data_folder)):
print(cell)
cell_folder = os.path.join(data_folder, cell)
if not os.path.exists(os.path.join(cell_folder, "samspikes1.dat")):
continue
cell_data = CellData(cell_folder)
sampling_rate = int(round(1 / cell_data.get_sampling_interval()))
sam_spikes = cell_data.get_sam_spiketimes()
delta_freqs = cell_data.get_sam_delta_frequencies()
[time_traces, v1_traces, eod_traces, local_eod_traces, stimulus_traces] = cell_data.get_sam_traces()
print(len(time_traces))
for i in range(len(delta_freqs)):
fig, axes = plt.subplots(2, 1, sharex="all")
axes[0].plot(time_traces[i], local_eod_traces[i])
axes[0].set_title("Local EOD - dF {}".format(delta_freqs[i]))
axes[1].plot(time_traces[i], v1_traces[i])
axes[1].set_title("v1 trace")
ah_spike = average_spike_height(sam_spikes, v1_traces[i], sampling_rate)
for j, idx in enumerate(get_x_best(ah_spike)):
axes[1].eventplot(sam_spikes[idx], lineoffsets=max(v1_traces[i] + 1.5 * (j + 1)),
colors=colors[j % len(colors)])
plt.show()
plt.close()
break
def average_spike_height(spike_trains, local_eod, sampling_rate):
average_height = []
for spikes_train in spike_trains:
indices = np.array([s * sampling_rate for s in spikes_train[0]], dtype=np.int)
local_eod = np.array(local_eod)
spike_values = [local_eod[i] for i in indices if i < len(local_eod)]
average_height.append(np.mean(spike_values))
return average_height
def get_x_best(average_heights, x=5):
biggest_idx = []
biggest_heights = []
for i, height in enumerate(average_heights):
if len(biggest_idx) < x:
biggest_idx.append(i)
biggest_heights.append(height)
elif height > min(biggest_heights):
mini = np.argmin(biggest_heights)
biggest_heights[mini] = height
biggest_idx[mini] = i
biggest_heights, biggest_idx = (list(t) for t in zip(*sorted(zip(biggest_heights, biggest_idx), reverse=True)))
print(biggest_heights)
return biggest_idx
if __name__ == '__main__':
main()